aboutsummaryrefslogtreecommitdiff
path: root/gnu
diff options
context:
space:
mode:
authorRicardo Wurmus <rekado@elephly.net>2022-12-02 21:18:14 +0100
committerRicardo Wurmus <rekado@elephly.net>2022-12-02 21:46:36 +0100
commitb2a9feab92fb78b441d693960962140d9467510a (patch)
tree10f03837378bd8598f9d9c0e97616218c1a0c3e7 /gnu
parent62da3f9837063b59c615accc86bb80ce03ae301d (diff)
downloadguix-b2a9feab92fb78b441d693960962140d9467510a.tar
guix-b2a9feab92fb78b441d693960962140d9467510a.tar.gz
gnu: Add python-hdmedians.
* gnu/packages/statistics.scm (python-hdmedians): New variable.
Diffstat (limited to 'gnu')
-rw-r--r--gnu/packages/statistics.scm31
1 files changed, 31 insertions, 0 deletions
diff --git a/gnu/packages/statistics.scm b/gnu/packages/statistics.scm
index 616eded618..4c7609683b 100644
--- a/gnu/packages/statistics.scm
+++ b/gnu/packages/statistics.scm
@@ -45,6 +45,7 @@
#:use-module (guix build-system emacs)
#:use-module (guix build-system gnu)
#:use-module (guix build-system r)
+ #:use-module (guix build-system pyproject)
#:use-module (guix build-system python)
#:use-module (guix build-system trivial)
#:use-module (gnu packages)
@@ -2010,6 +2011,36 @@ and fast file reading.")
"This package provides tools to export R data as LaTeX and HTML tables.")
(license license:gpl2+)))
+(define-public python-hdmedians
+ (package
+ (name "python-hdmedians")
+ (version "0.14.2")
+ (source (origin
+ (method url-fetch)
+ (uri (pypi-uri "hdmedians" version))
+ (sha256
+ (base32
+ "1mn2k8srnmfy451l7zvb2l4hn9701bc5awjm6q3vmqbicyqyqyml"))))
+ (build-system pyproject-build-system)
+ (arguments
+ (list
+ #:phases
+ '(modify-phases %standard-phases
+ (add-before 'check 'build-extensions
+ (lambda _
+ ;; Cython extensions have to be built before running the tests.
+ (invoke "python" "setup.py" "build_ext" "--inplace"))))))
+ (propagated-inputs (list python-cython python-numpy))
+ (native-inputs (list python-nose))
+ (home-page "http://github.com/daleroberts/hdmedians")
+ (synopsis "High-dimensional medians")
+ (description "Various definitions for a high-dimensional median exist and
+this Python package provides a number of fast implementations of these
+definitions. Medians are extremely useful due to their high breakdown
+point (up to 50% contamination) and have a number of nice applications in
+machine learning, computer vision, and high-dimensional statistics.")
+ (license license:asl2.0)))
+
(define-public python-patsy
(package
(name "python-patsy")