diff options
author | Ricardo Wurmus <rekado@elephly.net> | 2022-04-26 09:42:13 +0200 |
---|---|---|
committer | Ricardo Wurmus <rekado@elephly.net> | 2022-04-26 09:48:13 +0200 |
commit | 190830bd806b2caec97eac9890bfeebad20a686a (patch) | |
tree | 6bc135e1d8f1246d658c77b6ac2668e3e419ff3f /gnu/packages/cran.scm | |
parent | 2902adfc7e0e4e9526ead9d35be14ac4f9b77c1c (diff) | |
download | guix-190830bd806b2caec97eac9890bfeebad20a686a.tar guix-190830bd806b2caec97eac9890bfeebad20a686a.tar.gz |
gnu: Add r-dbscan.
* gnu/packages/cran.scm (r-dbscan): New variable.
Diffstat (limited to 'gnu/packages/cran.scm')
-rw-r--r-- | gnu/packages/cran.scm | 29 |
1 files changed, 29 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm index bc95eee065..21cfca3102 100644 --- a/gnu/packages/cran.scm +++ b/gnu/packages/cran.scm @@ -252,6 +252,35 @@ clean, transform, and prepare your data for analysis. It also forms the data wrangling backend for the packages in the @code{easystats} ecosystem.") (license license:gpl3))) +(define-public r-dbscan + (package + (name "r-dbscan") + (version "1.1-10") + (source + (origin + (method url-fetch) + (uri (cran-uri "dbscan" version)) + (sha256 + (base32 "1h8x1v9kk5zmw5qd575cyr16yz8l226lsaq71n079l4i8crcrzg1")))) + (properties `((upstream-name . "dbscan"))) + (build-system r-build-system) + (propagated-inputs (list r-rcpp)) + (native-inputs (list r-knitr)) + (home-page "https://github.com/mhahsler/dbscan") + (synopsis "Density-based spatial clustering of applications with noise") + (description + "This package provides a fast reimplementation of several density-based +algorithms of the DBSCAN family. It includes the clustering algorithms DBSCAN +(density-based spatial clustering of applications with noise) and +@dfn{hierarchical DBSCAN} (HDBSCAN), the ordering algorithm @dfn{ordering +points to identify the clustering structure} (OPTICS), shared nearest neighbor +clustering, and the outlier detection algorithms @dfn{local outlier +factor} (LOF) and @dfn{global-local outlier score from hierarchies} (GLOSH). +The implementations use the kd-tree data structure for faster k-nearest +neighbor search. An R interface to fast kNN and fixed-radius NN search is +also provided.") + (license license:gpl2+))) + (define-public r-diffobj (package (name "r-diffobj") |