aboutsummaryrefslogtreecommitdiff
path: root/src/test/test_crypto.c
blob: 7f4347a41c4e0481668c28008a1a5cd8da03d06e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/* Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2012, The Tor Project, Inc. */
/* See LICENSE for licensing information */

#include "orconfig.h"
#define CRYPTO_PRIVATE
#include "or.h"
#include "test.h"
#include "aes.h"

/** Run unit tests for Diffie-Hellman functionality. */
static void
test_crypto_dh(void)
{
  crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  char p1[DH_BYTES];
  char p2[DH_BYTES];
  char s1[DH_BYTES];
  char s2[DH_BYTES];
  ssize_t s1len, s2len;

  test_eq(crypto_dh_get_bytes(dh1), DH_BYTES);
  test_eq(crypto_dh_get_bytes(dh2), DH_BYTES);

  memset(p1, 0, DH_BYTES);
  memset(p2, 0, DH_BYTES);
  test_memeq(p1, p2, DH_BYTES);
  test_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  test_memneq(p1, p2, DH_BYTES);
  test_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  test_memneq(p1, p2, DH_BYTES);

  memset(s1, 0, DH_BYTES);
  memset(s2, 0xFF, DH_BYTES);
  s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  test_assert(s1len > 0);
  test_eq(s1len, s2len);
  test_memeq(s1, s2, s1len);

  {
    /* XXXX Now fabricate some bad values and make sure they get caught,
     * Check 0, 1, N-1, >= N, etc.
     */
  }

 done:
  crypto_dh_free(dh1);
  crypto_dh_free(dh2);
}

/** Run unit tests for our random number generation function and its wrappers.
 */
static void
test_crypto_rng(void)
{
  int i, j, allok;
  char data1[100], data2[100];
  double d;

  /* Try out RNG. */
  test_assert(! crypto_seed_rng(0));
  crypto_rand(data1, 100);
  crypto_rand(data2, 100);
  test_memneq(data1,data2,100);
  allok = 1;
  for (i = 0; i < 100; ++i) {
    uint64_t big;
    char *host;
    j = crypto_rand_int(100);
    if (j < 0 || j >= 100)
      allok = 0;
    big = crypto_rand_uint64(U64_LITERAL(1)<<40);
    if (big >= (U64_LITERAL(1)<<40))
      allok = 0;
    big = crypto_rand_uint64(U64_LITERAL(5));
    if (big >= 5)
      allok = 0;
    d = crypto_rand_double();
    test_assert(d >= 0);
    test_assert(d < 1.0);
    host = crypto_random_hostname(3,8,"www.",".onion");
    if (strcmpstart(host,"www.") ||
        strcmpend(host,".onion") ||
        strlen(host) < 13 ||
        strlen(host) > 18)
      allok = 0;
    tor_free(host);
  }
  test_assert(allok);
 done:
  ;
}

/** Run unit tests for our AES functionality */
static void
test_crypto_aes(void *arg)
{
  char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  crypto_cipher_t *env1 = NULL, *env2 = NULL;
  int i, j;
  char *mem_op_hex_tmp=NULL;

  int use_evp = !strcmp(arg,"evp");
  evaluate_evp_for_aes(use_evp);
  evaluate_ctr_for_aes();

  data1 = tor_malloc(1024);
  data2 = tor_malloc(1024);
  data3 = tor_malloc(1024);

  /* Now, test encryption and decryption with stream cipher. */
  data1[0]='\0';
  for (i = 1023; i>0; i -= 35)
    strncat(data1, "Now is the time for all good onions", i);

  memset(data2, 0, 1024);
  memset(data3, 0, 1024);
  env1 = crypto_cipher_new(NULL);
  test_neq(env1, 0);
  env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  test_neq(env2, 0);

  /* Try encrypting 512 chars. */
  crypto_cipher_encrypt(env1, data2, data1, 512);
  crypto_cipher_decrypt(env2, data3, data2, 512);
  test_memeq(data1, data3, 512);
  test_memneq(data1, data2, 512);

  /* Now encrypt 1 at a time, and get 1 at a time. */
  for (j = 512; j < 560; ++j) {
    crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  }
  for (j = 512; j < 560; ++j) {
    crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  }
  test_memeq(data1, data3, 560);
  /* Now encrypt 3 at a time, and get 5 at a time. */
  for (j = 560; j < 1024-5; j += 3) {
    crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  }
  for (j = 560; j < 1024-5; j += 5) {
    crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  }
  test_memeq(data1, data3, 1024-5);
  /* Now make sure that when we encrypt with different chunk sizes, we get
     the same results. */
  crypto_cipher_free(env2);
  env2 = NULL;

  memset(data3, 0, 1024);
  env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  test_neq(env2, 0);
  for (j = 0; j < 1024-16; j += 17) {
    crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  }
  for (j= 0; j < 1024-16; ++j) {
    if (data2[j] != data3[j]) {
      printf("%d:  %d\t%d\n", j, (int) data2[j], (int) data3[j]);
    }
  }
  test_memeq(data2, data3, 1024-16);
  crypto_cipher_free(env1);
  env1 = NULL;
  crypto_cipher_free(env2);
  env2 = NULL;

  /* NIST test vector for aes. */
  /* IV starts at 0 */
  env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
                           "\x00\x00\x00\x00\x00\x00\x00\x00");
  crypto_cipher_encrypt(env1, data1,
                        "\x00\x00\x00\x00\x00\x00\x00\x00"
                        "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");

  /* Now test rollover.  All these values are originally from a python
   * script. */
  crypto_cipher_free(env1);
  env1 = crypto_cipher_new_with_iv(
                                   "\x80\x00\x00\x00\x00\x00\x00\x00"
                                   "\x00\x00\x00\x00\x00\x00\x00\x00",
                                   "\x00\x00\x00\x00\x00\x00\x00\x00"
                                   "\xff\xff\xff\xff\xff\xff\xff\xff");
  memset(data2, 0,  1024);
  crypto_cipher_encrypt(env1, data1, data2, 32);
  test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
                        "cdd0b917dbc7186908a6bfb5ffd574d3");
  crypto_cipher_free(env1);
  env1 = crypto_cipher_new_with_iv(
                                   "\x80\x00\x00\x00\x00\x00\x00\x00"
                                   "\x00\x00\x00\x00\x00\x00\x00\x00",
                                   "\x00\x00\x00\x00\xff\xff\xff\xff"
                                   "\xff\xff\xff\xff\xff\xff\xff\xff");
  memset(data2, 0,  1024);
  crypto_cipher_encrypt(env1, data1, data2, 32);
  test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
                        "3e63c721df790d2c6469cc1953a3ffac");
  crypto_cipher_free(env1);
  env1 = crypto_cipher_new_with_iv(
                                   "\x80\x00\x00\x00\x00\x00\x00\x00"
                                   "\x00\x00\x00\x00\x00\x00\x00\x00",
                                   "\xff\xff\xff\xff\xff\xff\xff\xff"
                                   "\xff\xff\xff\xff\xff\xff\xff\xff");
  memset(data2, 0,  1024);
  crypto_cipher_encrypt(env1, data1, data2, 32);
  test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
                        "0EDD33D3C621E546455BD8BA1418BEC8");

  /* Now check rollover on inplace cipher. */
  crypto_cipher_free(env1);
  env1 = crypto_cipher_new_with_iv(
                                   "\x80\x00\x00\x00\x00\x00\x00\x00"
                                   "\x00\x00\x00\x00\x00\x00\x00\x00",
                                   "\xff\xff\xff\xff\xff\xff\xff\xff"
                                   "\xff\xff\xff\xff\xff\xff\xff\xff");
  crypto_cipher_crypt_inplace(env1, data2, 64);
  test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
                        "0EDD33D3C621E546455BD8BA1418BEC8"
                        "93e2c5243d6839eac58503919192f7ae"
                        "1908e67cafa08d508816659c2e693191");
  crypto_cipher_free(env1);
  env1 = crypto_cipher_new_with_iv(
                                   "\x80\x00\x00\x00\x00\x00\x00\x00"
                                   "\x00\x00\x00\x00\x00\x00\x00\x00",
                                   "\xff\xff\xff\xff\xff\xff\xff\xff"
                                   "\xff\xff\xff\xff\xff\xff\xff\xff");
  crypto_cipher_crypt_inplace(env1, data2, 64);
  test_assert(tor_mem_is_zero(data2, 64));

 done:
  tor_free(mem_op_hex_tmp);
  if (env1)
    crypto_cipher_free(env1);
  if (env2)
    crypto_cipher_free(env2);
  tor_free(data1);
  tor_free(data2);
  tor_free(data3);
}

/** Run unit tests for our SHA-1 functionality */
static void
test_crypto_sha(void)
{
  crypto_digest_t *d1 = NULL, *d2 = NULL;
  int i;
  char key[160];
  char digest[32];
  char data[50];
  char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
  char *mem_op_hex_tmp=NULL;

  /* Test SHA-1 with a test vector from the specification. */
  i = crypto_digest(data, "abc", 3);
  test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  tt_int_op(i, ==, 0);

  /* Test SHA-256 with a test vector from the specification. */
  i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
                       "96177A9CB410FF61F20015AD");
  tt_int_op(i, ==, 0);

  /* Test HMAC-SHA-1 with test cases from RFC2202. */

  /* Case 1. */
  memset(key, 0x0b, 20);
  crypto_hmac_sha1(digest, key, 20, "Hi There", 8);
  test_streq(hex_str(digest, 20),
             "B617318655057264E28BC0B6FB378C8EF146BE00");
  /* Case 2. */
  crypto_hmac_sha1(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  test_streq(hex_str(digest, 20),
             "EFFCDF6AE5EB2FA2D27416D5F184DF9C259A7C79");

  /* Case 4. */
  base16_decode(key, 25,
                "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  memset(data, 0xcd, 50);
  crypto_hmac_sha1(digest, key, 25, data, 50);
  test_streq(hex_str(digest, 20),
             "4C9007F4026250C6BC8414F9BF50C86C2D7235DA");

  /* Case 5. */
  memset(key, 0xaa, 80);
  crypto_hmac_sha1(digest, key, 80,
                   "Test Using Larger Than Block-Size Key - Hash Key First",
                   54);
  test_streq(hex_str(digest, 20),
             "AA4AE5E15272D00E95705637CE8A3B55ED402112");

  /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */

  /* Case empty (wikipedia) */
  crypto_hmac_sha256(digest, "", 0, "", 0);
  test_streq(hex_str(digest, 32),
           "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");

  /* Case quick-brown (wikipedia) */
  crypto_hmac_sha256(digest, "key", 3,
                     "The quick brown fox jumps over the lazy dog", 43);
  test_streq(hex_str(digest, 32),
           "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");

  /* "Test Case 1" from RFC 4231 */
  memset(key, 0x0b, 20);
  crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  test_memeq_hex(digest,
                 "b0344c61d8db38535ca8afceaf0bf12b"
                 "881dc200c9833da726e9376c2e32cff7");

  /* "Test Case 2" from RFC 4231 */
  memset(key, 0x0b, 20);
  crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  test_memeq_hex(digest,
                 "5bdcc146bf60754e6a042426089575c7"
                 "5a003f089d2739839dec58b964ec3843");

  /* "Test case 3" from RFC 4231 */
  memset(key, 0xaa, 20);
  memset(data, 0xdd, 50);
  crypto_hmac_sha256(digest, key, 20, data, 50);
  test_memeq_hex(digest,
                 "773ea91e36800e46854db8ebd09181a7"
                 "2959098b3ef8c122d9635514ced565fe");

  /* "Test case 4" from RFC 4231 */
  base16_decode(key, 25,
                "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  memset(data, 0xcd, 50);
  crypto_hmac_sha256(digest, key, 25, data, 50);
  test_memeq_hex(digest,
                 "82558a389a443c0ea4cc819899f2083a"
                 "85f0faa3e578f8077a2e3ff46729665b");

  /* "Test case 5" from RFC 4231 */
  memset(key, 0x0c, 20);
  crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  test_memeq_hex(digest,
                 "a3b6167473100ee06e0c796c2955552b");

  /* "Test case 6" from RFC 4231 */
  memset(key, 0xaa, 131);
  crypto_hmac_sha256(digest, key, 131,
                     "Test Using Larger Than Block-Size Key - Hash Key First",
                     54);
  test_memeq_hex(digest,
                 "60e431591ee0b67f0d8a26aacbf5b77f"
                 "8e0bc6213728c5140546040f0ee37f54");

  /* "Test case 7" from RFC 4231 */
  memset(key, 0xaa, 131);
  crypto_hmac_sha256(digest, key, 131,
                     "This is a test using a larger than block-size key and a "
                     "larger than block-size data. The key needs to be hashed "
                     "before being used by the HMAC algorithm.", 152);
  test_memeq_hex(digest,
                 "9b09ffa71b942fcb27635fbcd5b0e944"
                 "bfdc63644f0713938a7f51535c3a35e2");

  /* Incremental digest code. */
  d1 = crypto_digest_new();
  test_assert(d1);
  crypto_digest_add_bytes(d1, "abcdef", 6);
  d2 = crypto_digest_dup(d1);
  test_assert(d2);
  crypto_digest_add_bytes(d2, "ghijkl", 6);
  crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  crypto_digest(d_out2, "abcdefghijkl", 12);
  test_memeq(d_out1, d_out2, DIGEST_LEN);
  crypto_digest_assign(d2, d1);
  crypto_digest_add_bytes(d2, "mno", 3);
  crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  crypto_digest(d_out2, "abcdefmno", 9);
  test_memeq(d_out1, d_out2, DIGEST_LEN);
  crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  crypto_digest(d_out2, "abcdef", 6);
  test_memeq(d_out1, d_out2, DIGEST_LEN);
  crypto_digest_free(d1);
  crypto_digest_free(d2);

  /* Incremental digest code with sha256 */
  d1 = crypto_digest256_new(DIGEST_SHA256);
  test_assert(d1);
  crypto_digest_add_bytes(d1, "abcdef", 6);
  d2 = crypto_digest_dup(d1);
  test_assert(d2);
  crypto_digest_add_bytes(d2, "ghijkl", 6);
  crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  test_memeq(d_out1, d_out2, DIGEST_LEN);
  crypto_digest_assign(d2, d1);
  crypto_digest_add_bytes(d2, "mno", 3);
  crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  test_memeq(d_out1, d_out2, DIGEST_LEN);
  crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  test_memeq(d_out1, d_out2, DIGEST_LEN);

 done:
  if (d1)
    crypto_digest_free(d1);
  if (d2)
    crypto_digest_free(d2);
  tor_free(mem_op_hex_tmp);
}

/** Run unit tests for our public key crypto functions */
static void
test_crypto_pk(void)
{
  crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  char *encoded = NULL;
  char data1[1024], data2[1024], data3[1024];
  size_t size;
  int i, j, p, len;

  /* Public-key ciphers */
  pk1 = pk_generate(0);
  pk2 = crypto_pk_new();
  test_assert(pk1 && pk2);
  test_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  test_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  test_eq(0, crypto_pk_cmp_keys(pk1, pk2));

  test_eq(128, crypto_pk_keysize(pk1));
  test_eq(1024, crypto_pk_num_bits(pk1));
  test_eq(128, crypto_pk_keysize(pk2));
  test_eq(1024, crypto_pk_num_bits(pk2));

  test_eq(128, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
                                        "Hello whirled.", 15,
                                        PK_PKCS1_OAEP_PADDING));
  test_eq(128, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
                                        "Hello whirled.", 15,
                                        PK_PKCS1_OAEP_PADDING));
  /* oaep padding should make encryption not match */
  test_memneq(data1, data2, 128);
  test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
                                        PK_PKCS1_OAEP_PADDING,1));
  test_streq(data3, "Hello whirled.");
  memset(data3, 0, 1024);
  test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
                                        PK_PKCS1_OAEP_PADDING,1));
  test_streq(data3, "Hello whirled.");
  /* Can't decrypt with public key. */
  test_eq(-1, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
                                        PK_PKCS1_OAEP_PADDING,1));
  /* Try again with bad padding */
  memcpy(data2+1, "XYZZY", 5);  /* This has fails ~ once-in-2^40 */
  test_eq(-1, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
                                        PK_PKCS1_OAEP_PADDING,1));

  /* File operations: save and load private key */
  test_assert(! crypto_pk_write_private_key_to_filename(pk1,
                                                        get_fname("pkey1")));
  /* failing case for read: can't read. */
  test_assert(crypto_pk_read_private_key_from_filename(pk2,
                                                   get_fname("xyzzy")) < 0);
  write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  /* Failing case for read: no key. */
  test_assert(crypto_pk_read_private_key_from_filename(pk2,
                                                   get_fname("xyzzy")) < 0);
  test_assert(! crypto_pk_read_private_key_from_filename(pk2,
                                                         get_fname("pkey1")));
  test_eq(15, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
                                        PK_PKCS1_OAEP_PADDING,1));

  /* Now try signing. */
  strlcpy(data1, "Ossifrage", 1024);
  test_eq(128, crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  test_eq(10,
          crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  test_streq(data3, "Ossifrage");
  /* Try signing digests. */
  test_eq(128, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
                                             data1, 10));
  test_eq(20,
          crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  test_eq(0, crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  test_eq(-1, crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));

  /*XXXX test failed signing*/

  /* Try encoding */
  crypto_pk_free(pk2);
  pk2 = NULL;
  i = crypto_pk_asn1_encode(pk1, data1, 1024);
  test_assert(i>0);
  pk2 = crypto_pk_asn1_decode(data1, i);
  test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);

  /* Try with hybrid encryption wrappers. */
  crypto_rand(data1, 1024);
  for (i = 0; i < 2; ++i) {
    for (j = 85; j < 140; ++j) {
      memset(data2,0,1024);
      memset(data3,0,1024);
      p = (i==0)?PK_PKCS1_PADDING:PK_PKCS1_OAEP_PADDING;
      len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
                                            data1,j,p,0);
      test_assert(len>=0);
      len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
                                             data2,len,p,1);
      test_eq(len,j);
      test_memeq(data1,data3,j);
    }
  }

  /* Try copy_full */
  crypto_pk_free(pk2);
  pk2 = crypto_pk_copy_full(pk1);
  test_assert(pk2 != NULL);
  test_neq_ptr(pk1, pk2);
  test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);

 done:
  if (pk1)
    crypto_pk_free(pk1);
  if (pk2)
    crypto_pk_free(pk2);
  tor_free(encoded);
}

/** Run unit tests for misc crypto formatting functionality (base64, base32,
 * fingerprints, etc) */
static void
test_crypto_formats(void)
{
  char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  int i, j, idx;

  data1 = tor_malloc(1024);
  data2 = tor_malloc(1024);
  data3 = tor_malloc(1024);
  test_assert(data1 && data2 && data3);

  /* Base64 tests */
  memset(data1, 6, 1024);
  for (idx = 0; idx < 10; ++idx) {
    i = base64_encode(data2, 1024, data1, idx);
    test_assert(i >= 0);
    j = base64_decode(data3, 1024, data2, i);
    test_eq(j,idx);
    test_memeq(data3, data1, idx);
  }

  strlcpy(data1, "Test string that contains 35 chars.", 1024);
  strlcat(data1, " 2nd string that contains 35 chars.", 1024);

  i = base64_encode(data2, 1024, data1, 71);
  test_assert(i >= 0);
  j = base64_decode(data3, 1024, data2, i);
  test_eq(j, 71);
  test_streq(data3, data1);
  test_assert(data2[i] == '\0');

  crypto_rand(data1, DIGEST_LEN);
  memset(data2, 100, 1024);
  digest_to_base64(data2, data1);
  test_eq(BASE64_DIGEST_LEN, strlen(data2));
  test_eq(100, data2[BASE64_DIGEST_LEN+2]);
  memset(data3, 99, 1024);
  test_eq(digest_from_base64(data3, data2), 0);
  test_memeq(data1, data3, DIGEST_LEN);
  test_eq(99, data3[DIGEST_LEN+1]);

  test_assert(digest_from_base64(data3, "###") < 0);

  /* Encoding SHA256 */
  crypto_rand(data2, DIGEST256_LEN);
  memset(data2, 100, 1024);
  digest256_to_base64(data2, data1);
  test_eq(BASE64_DIGEST256_LEN, strlen(data2));
  test_eq(100, data2[BASE64_DIGEST256_LEN+2]);
  memset(data3, 99, 1024);
  test_eq(digest256_from_base64(data3, data2), 0);
  test_memeq(data1, data3, DIGEST256_LEN);
  test_eq(99, data3[DIGEST256_LEN+1]);

  /* Base32 tests */
  strlcpy(data1, "5chrs", 1024);
  /* bit pattern is:  [35 63 68 72 73] ->
   *        [00110101 01100011 01101000 01110010 01110011]
   * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
   */
  base32_encode(data2, 9, data1, 5);
  test_streq(data2, "gvrwq4tt");

  strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  base32_encode(data2, 30, data1, 10);
  test_streq(data2, "772w2rfobvomsywe");

  /* Base16 tests */
  strlcpy(data1, "6chrs\xff", 1024);
  base16_encode(data2, 13, data1, 6);
  test_streq(data2, "3663687273FF");

  strlcpy(data1, "f0d678affc000100", 1024);
  i = base16_decode(data2, 8, data1, 16);
  test_eq(i,0);
  test_memeq(data2, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);

  /* now try some failing base16 decodes */
  test_eq(-1, base16_decode(data2, 8, data1, 15)); /* odd input len */
  test_eq(-1, base16_decode(data2, 7, data1, 16)); /* dest too short */
  strlcpy(data1, "f0dz!8affc000100", 1024);
  test_eq(-1, base16_decode(data2, 8, data1, 16));

  tor_free(data1);
  tor_free(data2);
  tor_free(data3);

  /* Add spaces to fingerprint */
  {
    data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
    test_eq(strlen(data1), 40);
    data2 = tor_malloc(FINGERPRINT_LEN+1);
    add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
    test_streq(data2, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
    tor_free(data1);
    tor_free(data2);
  }

  /* Check fingerprint */
  {
    test_assert(crypto_pk_check_fingerprint_syntax(
                "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000"));
    test_assert(!crypto_pk_check_fingerprint_syntax(
                "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 000"));
    test_assert(!crypto_pk_check_fingerprint_syntax(
                "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 00000"));
    test_assert(!crypto_pk_check_fingerprint_syntax(
                "ABCD 1234 ABCD 5678 0000 ABCD1234 ABCD 5678 0000"));
    test_assert(!crypto_pk_check_fingerprint_syntax(
                "ABCD 1234 ABCD 5678 0000 ABCD1234 ABCD 5678 00000"));
    test_assert(!crypto_pk_check_fingerprint_syntax(
                "ACD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 00000"));
  }

 done:
  tor_free(data1);
  tor_free(data2);
  tor_free(data3);
}

/** Run unit tests for our secret-to-key passphrase hashing functionality. */
static void
test_crypto_s2k(void)
{
  char buf[29];
  char buf2[29];
  char *buf3 = NULL;
  int i;

  memset(buf, 0, sizeof(buf));
  memset(buf2, 0, sizeof(buf2));
  buf3 = tor_malloc(65536);
  memset(buf3, 0, 65536);

  secret_to_key(buf+9, 20, "", 0, buf);
  crypto_digest(buf2+9, buf3, 1024);
  test_memeq(buf, buf2, 29);

  memcpy(buf,"vrbacrda",8);
  memcpy(buf2,"vrbacrda",8);
  buf[8] = 96;
  buf2[8] = 96;
  secret_to_key(buf+9, 20, "12345678", 8, buf);
  for (i = 0; i < 65536; i += 16) {
    memcpy(buf3+i, "vrbacrda12345678", 16);
  }
  crypto_digest(buf2+9, buf3, 65536);
  test_memeq(buf, buf2, 29);

 done:
  tor_free(buf3);
}

/** Test AES-CTR encryption and decryption with IV. */
static void
test_crypto_aes_iv(void *arg)
{
  char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  char key1[16], key2[16];
  ssize_t encrypted_size, decrypted_size;

  int use_evp = !strcmp(arg,"evp");
  evaluate_evp_for_aes(use_evp);

  plain = tor_malloc(4095);
  encrypted1 = tor_malloc(4095 + 1 + 16);
  encrypted2 = tor_malloc(4095 + 1 + 16);
  decrypted1 = tor_malloc(4095 + 1);
  decrypted2 = tor_malloc(4095 + 1);

  crypto_rand(plain, 4095);
  crypto_rand(key1, 16);
  crypto_rand(key2, 16);
  crypto_rand(plain_1, 1);
  crypto_rand(plain_15, 15);
  crypto_rand(plain_16, 16);
  crypto_rand(plain_17, 17);
  key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  /* Encrypt and decrypt with the same key. */
  encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
                                                 plain, 4095);

  test_eq(encrypted_size, 16 + 4095);
  tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
                                   * greater than 0, but its truth is not
                                   * obvious to all analysis tools. */
  decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
                                             encrypted1, encrypted_size);

  test_eq(decrypted_size, 4095);
  tt_assert(decrypted_size > 0);
  test_memeq(plain, decrypted1, 4095);
  /* Encrypt a second time (with a new random initialization vector). */
  encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
                                             plain, 4095);

  test_eq(encrypted_size, 16 + 4095);
  tt_assert(encrypted_size > 0);
  decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
                                             encrypted2, encrypted_size);
  test_eq(decrypted_size, 4095);
  tt_assert(decrypted_size > 0);
  test_memeq(plain, decrypted2, 4095);
  test_memneq(encrypted1, encrypted2, encrypted_size);
  /* Decrypt with the wrong key. */
  decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
                                             encrypted1, encrypted_size);
  test_memneq(plain, decrypted2, encrypted_size);
  /* Alter the initialization vector. */
  encrypted1[0] += 42;
  decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
                                             encrypted1, encrypted_size);
  test_memneq(plain, decrypted2, 4095);
  /* Special length case: 1. */
  encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
                                             plain_1, 1);
  test_eq(encrypted_size, 16 + 1);
  tt_assert(encrypted_size > 0);
  decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
                                             encrypted1, encrypted_size);
  test_eq(decrypted_size, 1);
  tt_assert(decrypted_size > 0);
  test_memeq(plain_1, decrypted1, 1);
  /* Special length case: 15. */
  encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
                                             plain_15, 15);
  test_eq(encrypted_size, 16 + 15);
  tt_assert(encrypted_size > 0);
  decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
                                             encrypted1, encrypted_size);
  test_eq(decrypted_size, 15);
  tt_assert(decrypted_size > 0);
  test_memeq(plain_15, decrypted1, 15);
  /* Special length case: 16. */
  encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
                                             plain_16, 16);
  test_eq(encrypted_size, 16 + 16);
  tt_assert(encrypted_size > 0);
  decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
                                             encrypted1, encrypted_size);
  test_eq(decrypted_size, 16);
  tt_assert(decrypted_size > 0);
  test_memeq(plain_16, decrypted1, 16);
  /* Special length case: 17. */
  encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
                                             plain_17, 17);
  test_eq(encrypted_size, 16 + 17);
  tt_assert(encrypted_size > 0);
  decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
                                             encrypted1, encrypted_size);
  test_eq(decrypted_size, 17);
  tt_assert(decrypted_size > 0);
  test_memeq(plain_17, decrypted1, 17);

 done:
  /* Free memory. */
  tor_free(plain);
  tor_free(encrypted1);
  tor_free(encrypted2);
  tor_free(decrypted1);
  tor_free(decrypted2);
}

/** Test base32 decoding. */
static void
test_crypto_base32_decode(void)
{
  char plain[60], encoded[96 + 1], decoded[60];
  int res;
  crypto_rand(plain, 60);
  /* Encode and decode a random string. */
  base32_encode(encoded, 96 + 1, plain, 60);
  res = base32_decode(decoded, 60, encoded, 96);
  test_eq(res, 0);
  test_memeq(plain, decoded, 60);
  /* Encode, uppercase, and decode a random string. */
  base32_encode(encoded, 96 + 1, plain, 60);
  tor_strupper(encoded);
  res = base32_decode(decoded, 60, encoded, 96);
  test_eq(res, 0);
  test_memeq(plain, decoded, 60);
  /* Change encoded string and decode. */
  if (encoded[0] == 'A' || encoded[0] == 'a')
    encoded[0] = 'B';
  else
    encoded[0] = 'A';
  res = base32_decode(decoded, 60, encoded, 96);
  test_eq(res, 0);
  test_memneq(plain, decoded, 60);
  /* Bad encodings. */
  encoded[0] = '!';
  res = base32_decode(decoded, 60, encoded, 96);
  test_assert(res < 0);

 done:
  ;
}

static void *
pass_data_setup_fn(const struct testcase_t *testcase)
{
  return testcase->setup_data;
}
static int
pass_data_cleanup_fn(const struct testcase_t *testcase, void *ptr)
{
  (void)ptr;
  (void)testcase;
  return 1;
}
static const struct testcase_setup_t pass_data = {
  pass_data_setup_fn, pass_data_cleanup_fn
};

#define CRYPTO_LEGACY(name)                                            \
  { #name, legacy_test_helper, 0, &legacy_setup, test_crypto_ ## name }

struct testcase_t crypto_tests[] = {
  CRYPTO_LEGACY(formats),
  CRYPTO_LEGACY(rng),
  { "aes_AES", test_crypto_aes, TT_FORK, &pass_data, (void*)"aes" },
  { "aes_EVP", test_crypto_aes, TT_FORK, &pass_data, (void*)"evp" },
  CRYPTO_LEGACY(sha),
  CRYPTO_LEGACY(pk),
  CRYPTO_LEGACY(dh),
  CRYPTO_LEGACY(s2k),
  { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"aes" },
  { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"evp" },
  CRYPTO_LEGACY(base32_decode),
  END_OF_TESTCASES
};