1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
#include "or.h"
/********* START VARIABLES **********/
static circuit_t *global_circuitlist=NULL;
/********* END VARIABLES ************/
void circuit_add(circuit_t *circ) {
if(!global_circuitlist) { /* first one */
global_circuitlist = circ;
circ->next = NULL;
} else {
circ->next = global_circuitlist;
global_circuitlist = circ;
}
}
void circuit_remove(circuit_t *circ) {
circuit_t *tmpcirc;
assert(circ && global_circuitlist);
if(global_circuitlist == circ) {
global_circuitlist = global_circuitlist->next;
return;
}
for(tmpcirc = global_circuitlist;tmpcirc->next;tmpcirc = tmpcirc->next) {
if(tmpcirc->next == circ) {
tmpcirc->next = circ->next;
return;
}
}
}
circuit_t *circuit_new(aci_t p_aci, connection_t *p_conn) {
circuit_t *circ;
circ = (circuit_t *)malloc(sizeof(circuit_t));
if(!circ)
return NULL;
memset(circ,0,sizeof(circuit_t)); /* zero it out */
circ->p_aci = p_aci;
circ->p_conn = p_conn;
circ->state = CIRCUIT_STATE_OPEN_WAIT;
/* ACIs */
circ->p_aci = p_aci;
/* circ->n_aci remains 0 because we haven't identified the next hop yet */
circuit_add(circ);
return circ;
}
void circuit_free(circuit_t *circ) {
EVP_CIPHER_CTX_cleanup(&circ->n_ctx);
EVP_CIPHER_CTX_cleanup(&circ->p_ctx);
if(circ->onion)
free(circ->onion);
if(circ->cpath)
circuit_free_cpath(circ->cpath, circ->cpathlen);
free(circ);
}
void circuit_free_cpath(crypt_path_t **cpath, size_t cpathlen) {
int i;
for(i=0;i<cpathlen;i++)
free(cpath[i]);
free(cpath);
}
aci_t get_unique_aci_by_addr_port(uint32_t addr, uint16_t port, int aci_type) {
aci_t test_aci;
connection_t *conn;
log(LOG_DEBUG,"get_unique_aci_by_addr_port() trying to get a unique aci");
RAND_pseudo_bytes((unsigned char *)&test_aci, 2);
if(aci_type == ACI_TYPE_LOWER)
test_aci &= htons(0x00FF);
if(aci_type == ACI_TYPE_HIGHER)
test_aci &= htons(0xFF00);
/* if aci_type == ACI_BOTH, don't filter any of it */
if(test_aci == 0)
return get_unique_aci_by_addr_port(addr, port, aci_type); /* try again */
conn = connection_get_by_addr_port(addr,port);
if(!conn) /* there can't be a conflict -- no connection of that sort yet */
return test_aci;
if(circuit_get_by_aci_conn(test_aci, conn))
return get_unique_aci_by_addr_port(addr, port, aci_type); /* try again */
return test_aci;
}
int circuit_init(circuit_t *circ, int aci_type) {
onion_layer_t *ol;
int retval = 0;
unsigned char digest1[20];
unsigned char digest2[20];
assert(circ);
ol = (onion_layer_t *)circ->onion;
assert(ol);
log(LOG_DEBUG,"circuit_init(): starting");
circ->n_addr = ol->addr;
circ->n_port = ol->port;
log(LOG_DEBUG,"circuit_init(): Set port to %u.",ntohs(ol->port));
circ->p_f = ol->backf;
log(LOG_DEBUG,"circuit_init(): Set BACKF to %u.",ol->backf);
circ->n_f = ol->forwf;
log(LOG_DEBUG,"circuit_init(): Set FORWF to %u.",ol->forwf);
circ->state = CIRCUIT_STATE_OPEN;
log(LOG_DEBUG,"circuit_init(): aci_type = %u.",aci_type);
circ->n_aci = get_unique_aci_by_addr_port(circ->n_addr, circ->n_port, aci_type);
log(LOG_DEBUG,"circuit_init(): Chosen ACI %u.",circ->n_aci);
/* keys */
SHA1(ol->keyseed,16,digest1);
SHA1(digest1,20,digest2);
SHA1(digest2,20,digest1);
memcpy(circ->p_key,digest2,16);
memcpy(circ->n_key,digest1,16);
log(LOG_DEBUG,"circuit_init(): Computed keys.");
/* set IVs to zero */
memset(circ->n_iv,0,16);
memset(circ->p_iv,0,16);
/* initialize cipher context */
EVP_CIPHER_CTX_init(&circ->n_ctx);
EVP_CIPHER_CTX_init(&circ->p_ctx);
/* initialize crypto engines */
switch(circ->p_f)
{
case ONION_CIPHER_DES :
retval = EVP_EncryptInit(&circ->p_ctx, EVP_des_ofb(), circ->p_key, circ->p_iv);
break;
case ONION_CIPHER_RC4 :
retval = EVP_EncryptInit(&circ->p_ctx, EVP_rc4(), circ->p_key,circ->p_iv);
break;
case ONION_CIPHER_IDENTITY :
retval = EVP_EncryptInit(&circ->p_ctx, EVP_enc_null(), circ->p_key, circ->p_iv);
break;
default :
log(LOG_ERR,"Onion contains unrecognized cipher(%u) for ACI : %u.",circ->p_f,circ->n_aci);
return -1;
break;
}
if (!retval) /* EVP_EncryptInit() error */
{
log(LOG_ERR,"Cipher initialization failed (ACI %u).",circ->n_aci);
EVP_CIPHER_CTX_cleanup(&circ->n_ctx);
EVP_CIPHER_CTX_cleanup(&circ->p_ctx);
return -1;
}
switch(circ->n_f)
{
case ONION_CIPHER_DES :
retval = EVP_DecryptInit(&circ->n_ctx, EVP_des_ofb(), circ->n_key, circ->n_iv);
break;
case ONION_CIPHER_RC4 :
retval = EVP_DecryptInit(&circ->n_ctx, EVP_rc4(), circ->n_key,circ->n_iv);
break;
case ONION_CIPHER_IDENTITY :
retval = EVP_DecryptInit(&circ->n_ctx, EVP_enc_null(), circ->n_key, circ->n_iv);
break;
default :
log(LOG_ERR,"Onion contains unrecognized cipher for ACI : %u.",circ->n_aci);
return -1;
break;
}
if (!retval) /* EVP_EncryptInit() error */
{
log(LOG_ERR,"Cipher initialization failed (ACI %u).",circ->n_aci);
EVP_CIPHER_CTX_cleanup(&circ->n_ctx);
EVP_CIPHER_CTX_cleanup(&circ->p_ctx);
return -1;
}
log(LOG_DEBUG,"circuit_init(): Cipher initialization complete.");
circ->expire = ol->expire;
return 0;
}
circuit_t *circuit_get_by_naddr_nport(uint32_t naddr, uint16_t nport) {
circuit_t *circ;
for(circ=global_circuitlist;circ;circ = circ->next) {
if(circ->n_addr == naddr && circ->n_port == nport)
return circ;
}
return NULL;
}
circuit_t *circuit_get_by_aci_conn(aci_t aci, connection_t *conn) {
circuit_t *circ;
for(circ=global_circuitlist;circ;circ = circ->next) {
if(circ->p_conn == conn && circ->p_aci == aci)
return circ;
if(circ->n_conn == conn && circ->n_aci == aci)
return circ;
}
return NULL;
}
circuit_t *circuit_get_by_conn(connection_t *conn) {
circuit_t *circ;
for(circ=global_circuitlist;circ;circ = circ->next) {
if(circ->p_conn == conn)
return circ;
if(circ->n_conn == conn)
return circ;
}
return NULL;
}
int circuit_deliver_data_cell(cell_t *cell, circuit_t *circ, connection_t *conn, int crypt_type) {
/* first decrypt cell->length */
if(circuit_crypt(circ, &(cell->length), 1, crypt_type) < 0) {
log(LOG_DEBUG,"circuit_deliver_data_cell(): length decryption failed. Dropping connection.");
return -1;
}
/* then decrypt the payload */
if(circuit_crypt(circ, (char *)&(cell->payload), CELL_PAYLOAD_SIZE, crypt_type) < 0) {
log(LOG_DEBUG,"circuit_deliver_data_cell(): payload decryption failed. Dropping connection.");
return -1;
}
if(conn->type == CONN_TYPE_EXIT) { /* send payload directly */
log(LOG_DEBUG,"circuit_deliver_data_cell(): Sending to exit.");
return connection_exit_process_data_cell(cell, conn);
}
if(conn->type == CONN_TYPE_AP) { /* send payload directly */
log(LOG_DEBUG,"circuit_deliver_data_cell(): Sending to AP.");
return connection_ap_process_data_cell(cell, conn);
}
/* else send it as a cell */
log(LOG_DEBUG,"circuit_deliver_data_cell(): Sending to connection.");
return connection_write_cell_to_buf(cell, conn);
}
int circuit_crypt(circuit_t *circ, char *in, size_t inlen, char crypt_type) {
char *out;
int outlen;
int i;
crypt_path_t *thishop;
assert(circ && in);
out = malloc(inlen);
if(!out)
return -1;
if(crypt_type == 'e') {
log(LOG_DEBUG,"circuit_crypt(): Encrypting %d bytes.",inlen);
if(circ->cpath) { /* we're at the beginning of the circuit. We'll want to do layered crypts. */
/* 'e' means we're preparing to send it out. */
for (i=0; i < circ->cpathlen; i++) /* moving from last to first hop
* Remember : cpath is in reverse order, i.e. last hop first
*/
{
log(LOG_DEBUG,"circuit_crypt() : Encrypting via cpath: Processing hop %u",circ->cpathlen-i);
thishop = circ->cpath[i];
/* encrypt */
if(!EVP_EncryptUpdate(&thishop->f_ctx,out,&outlen,in,inlen)) {
log(LOG_ERR,"Error performing encryption:%s",ERR_reason_error_string(ERR_get_error()));
free(out);
return -1;
}
/* copy ciphertext back to buf */
memcpy(in,out,inlen);
}
} else { /* we're in the middle. Just one crypt. */
if(!EVP_EncryptUpdate(&circ->p_ctx,out,&outlen,in,inlen)) {
log(LOG_ERR,"circuit_encrypt(): Encryption failed for ACI : %u (%s).",
circ->p_aci, ERR_reason_error_string(ERR_get_error()));
free(out);
return -1;
}
memcpy(in,out,inlen);
}
} else if(crypt_type == 'd') {
log(LOG_DEBUG,"circuit_crypt(): Decrypting %d bytes.",inlen);
if(circ->cpath) { /* we're at the beginning of the circuit. We'll want to do layered crypts. */
for (i=circ->cpathlen-1; i >= 0; i--) /* moving from first to last hop
* Remember : cpath is in reverse order, i.e. last hop first
*/
{
log(LOG_DEBUG,"circuit_crypt() : Decrypting via cpath: Processing hop %u",circ->cpathlen-i);
thishop = circ->cpath[i];
/* encrypt */
if(!EVP_DecryptUpdate(&thishop->b_ctx,out,&outlen,in,inlen)) {
log(LOG_ERR,"Error performing decryption:%s",ERR_reason_error_string(ERR_get_error()));
free(out);
return -1;
}
/* copy ciphertext back to buf */
memcpy(in,out,inlen);
}
} else { /* we're in the middle. Just one crypt. */
if(!EVP_DecryptUpdate(&circ->n_ctx,out,&outlen,in,inlen)) {
log(LOG_ERR,"circuit_crypt(): Decryption failed for ACI : %u (%s).",
circ->n_aci, ERR_reason_error_string(ERR_get_error()));
free(out);
return -1;
}
memcpy(in,out,inlen);
}
}
free(out);
return 0;
}
void circuit_close(circuit_t *circ) {
circuit_remove(circ);
if(circ->n_conn)
connection_send_destroy(circ->n_aci, circ->n_conn);
if(circ->p_conn)
connection_send_destroy(circ->p_aci, circ->p_conn);
circuit_free(circ);
}
void circuit_about_to_close_connection(connection_t *conn) {
/* send destroys for all circuits using conn */
/* currently, we assume it's too late to flush conn's buf here.
* down the road, maybe we'll consider that eof doesn't mean can't-write
*/
circuit_t *circ;
while((circ = circuit_get_by_conn(conn))) {
circuit_remove(circ);
if(circ->n_conn == conn) /* it's closing in front of us */
connection_send_destroy(circ->p_aci, circ->p_conn);
if(circ->p_conn == conn) /* it's closing behind us */
connection_send_destroy(circ->n_aci, circ->n_conn);
circuit_free(circ);
}
}
|