1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
/* Copyright 2001,2002 Roger Dingledine, Matej Pfajfar. */
/* See LICENSE for licensing information */
/* $Id$ */
/* buffers.c */
#include "or.h"
extern or_options_t options; /* command-line and config-file options */
/* Create a new buf of size MAX_BUF_SIZE. Write a pointer to it
* into *buf, write MAX_BUF_SIZE into *buflen, and initialize
* *buf_datalen to 0. Return 0 if success, or -1 if malloc fails.
*/
int buf_new(char **buf, int *buflen, int *buf_datalen) {
assert(buf && buflen && buf_datalen);
*buf = (char *)malloc(MAX_BUF_SIZE);
if(!*buf)
return -1;
// memset(*buf,0,MAX_BUF_SIZE);
*buflen = MAX_BUF_SIZE;
*buf_datalen = 0;
return 0;
}
void buf_free(char *buf) {
free(buf);
}
/* read from socket s, writing onto buf+buf_datalen. If at_most is >= 0 then
* read at most 'at_most' bytes, and in any case don't read more than will fit based on buflen.
* If read() returns 0, set *reached_eof to 1 and return 0. If you want to tear
* down the connection return -1, else return the number of bytes read.
*/
int read_to_buf(int s, int at_most, char **buf, int *buflen, int *buf_datalen, int *reached_eof) {
int read_result;
assert(buf && *buf && buflen && buf_datalen && reached_eof && (s>=0));
/* this is the point where you would grow the buffer, if you want to */
if(at_most < 0 || *buflen - *buf_datalen < at_most)
at_most = *buflen - *buf_datalen; /* take the min of the two */
/* (note that this only modifies at_most inside this function) */
if(at_most == 0)
return 0; /* we shouldn't read anything */
if(!options.LinkPadding && at_most > 10*sizeof(cell_t)) {
/* if no linkpadding: do a rudimentary round-robin so one
* connection can't hog a thickpipe
*/
at_most = 10*(CELL_PAYLOAD_SIZE - TOPIC_HEADER_SIZE);
/* XXX this still isn't perfect. now we read 10 data payloads per read --
* but if we're reading from a connection that speaks cells, we always
* read a partial cell from the network and can't process it yet. Good
* enough for now though. (And maybe best, to stress our code more.)
*/
}
// log(LOG_DEBUG,"read_to_buf(): reading at most %d bytes.",at_most);
read_result = read(s, *buf+*buf_datalen, at_most);
if (read_result < 0) {
if(errno!=EAGAIN) { /* it's a real error */
return -1;
}
return 0;
} else if (read_result == 0) {
log(LOG_DEBUG,"read_to_buf(): Encountered eof");
*reached_eof = 1;
return 0;
} else { /* we read some bytes */
*buf_datalen += read_result;
// log(LOG_DEBUG,"read_to_buf(): Read %d bytes. %d on inbuf.",read_result, *buf_datalen);
return read_result;
}
}
int flush_buf(int s, char **buf, int *buflen, int *buf_flushlen, int *buf_datalen) {
/* push from buf onto s
* then memmove to front of buf
* return -1 or how many bytes remain to be flushed */
int write_result;
assert(buf && *buf && buflen && buf_flushlen && buf_datalen && (s>=0) && (*buf_flushlen <= *buf_datalen));
if(*buf_flushlen == 0) /* nothing to flush */
return 0;
/* this is the point where you would grow the buffer, if you want to */
write_result = write(s, *buf, *buf_flushlen);
if (write_result < 0) {
if(errno!=EAGAIN) { /* it's a real error */
return -1;
}
log(LOG_DEBUG,"flush_buf(): write() would block, returning.");
return 0;
} else {
*buf_datalen -= write_result;
*buf_flushlen -= write_result;
memmove(*buf, *buf+write_result, *buf_datalen);
// log(LOG_DEBUG,"flush_buf(): flushed %d bytes, %d ready to flush, %d remain.",
// write_result,*buf_flushlen,*buf_datalen);
return *buf_flushlen;
}
}
int write_to_buf(char *string, int string_len,
char **buf, int *buflen, int *buf_datalen) {
/* append string to buf (growing as needed, return -1 if "too big")
* return total number of bytes on the buf
*/
assert(string && buf && *buf && buflen && buf_datalen);
/* this is the point where you would grow the buffer, if you want to */
if (string_len + *buf_datalen > *buflen) { /* we're out of luck */
log(LOG_DEBUG, "write_to_buf(): buflen too small. Time to implement growing dynamic bufs.");
return -1;
}
memcpy(*buf+*buf_datalen, string, string_len);
*buf_datalen += string_len;
// log(LOG_DEBUG,"write_to_buf(): added %d bytes to buf (now %d total).",string_len, *buf_datalen);
return *buf_datalen;
}
z_stream *zstream_new(int compression)
{
z_stream* stream;
stream = malloc(sizeof(z_stream));
if (!stream)
return NULL;
memset(stream, 0, sizeof(z_stream));
if (compression) {
if (deflateInit(stream, Z_DEFAULT_COMPRESSION) != Z_OK) {
log(LOG_ERR, "Error initializing zlib: %s", stream->msg);
free(stream);
return NULL;
}
} else {
if (inflateInit(stream) != Z_OK) {
log(LOG_ERR, "Error initializing zlib: %s", stream->msg);
free(stream);
return NULL;
}
}
return stream;
}
z_compression *compression_new()
{
return (z_compression *) zstream_new(1);
}
z_decompression *decompression_new()
{
return (z_compression *) zstream_new(0);
}
void compression_free(z_stream *stream)
{
int r;
r = deflateEnd(stream);
if (r != Z_OK)
log(LOG_ERR, "while closing zlib: %d (%s)", r, stream->msg);
free(stream);
}
void decompression_free(z_stream *stream)
{
int r;
r = inflateEnd(stream);
if (r != Z_OK)
log(LOG_ERR, "while closing zlib: %d (%s)", r, stream->msg);
free(stream);
}
int compress_from_buf(char *string, int string_len,
char **buf_in, int *buflen_in, int *buf_datalen_in,
z_stream *zstream, int flush) {
int err;
if (!*buf_datalen_in)
return 0;
zstream->next_in = *buf_in;
zstream->avail_in = *buf_datalen_in;
zstream->next_out = string;
zstream->avail_out = string_len;
err = deflate(zstream, flush);
switch (err)
{
case Z_OK:
case Z_STREAM_END:
log(LOG_DEBUG, "Compressed (%d/%d); filled (%d/%d).",
*buf_datalen_in-zstream->avail_in, *buf_datalen_in,
string_len-zstream->avail_out, string_len);
memmove(*buf_in, zstream->next_in, zstream->avail_in);
*buf_datalen_in = zstream->avail_in;
return string_len - zstream->avail_out;
case Z_STREAM_ERROR:
case Z_BUF_ERROR:
log(LOG_ERR, "Error processing compression: %s", zstream->msg);
return -1;
default:
log(LOG_ERR, "Unknown return value from deflate: %d", err);
return -1;
}
}
int decompress_buf_to_buf(char **buf_in, int *buflen_in, int *buf_datalen_in,
char **buf_out, int *buflen_out, int *buf_datalen_out,
z_stream *zstream, int flush)
{
int err;
zstream->next_in = *buf_in;
zstream->avail_in = *buf_datalen_in;
zstream->next_out = *buf_out + *buf_datalen_out;
zstream->avail_out = *buflen_out - *buf_datalen_out;
if (!zstream->avail_in && !zstream->avail_out)
return 0;
err = inflate(zstream, flush);
switch (err)
{
case Z_OK:
case Z_STREAM_END:
log(LOG_DEBUG, "Uncompressed (%d/%d); filled (%d/%d)",
*buf_datalen_in-zstream->avail_in, *buf_datalen_in,
(*buflen_out-*buf_datalen_out)-zstream->avail_out,
(*buflen_out-*buf_datalen_out) );
memmove(*buf_in, zstream->next_in, zstream->avail_in);
*buf_datalen_in = zstream->avail_in;
*buf_datalen_out = *buflen_out - zstream->avail_out;
return 1;
case Z_STREAM_ERROR:
case Z_BUF_ERROR:
log(LOG_ERR, "Error processing compression: %s", zstream->msg);
return 1;
default:
log(LOG_ERR, "Unknown return value from deflate: %d", err);
return -1;
}
}
int fetch_from_buf(char *string, int string_len,
char **buf, int *buflen, int *buf_datalen) {
/* if there are string_len bytes in buf, write them onto string,
* then memmove buf back (that is, remove them from buf).
*
* If there are not enough bytes on the buffer to fill string, return -1.
*
* Return the number of bytes still on the buffer. */
assert(string && buf && *buf && buflen && buf_datalen);
/* this is the point where you would grow the buffer, if you want to */
if(string_len > *buf_datalen) /* we want too much. sorry. */
return -1;
memcpy(string,*buf,string_len);
*buf_datalen -= string_len;
memmove(*buf, *buf+string_len, *buf_datalen);
return *buf_datalen;
}
int find_on_inbuf(char *string, int string_len,
char *buf, int buf_datalen) {
/* find first instance of needle 'string' on haystack 'buf'. return how
* many bytes from the beginning of buf to the end of string.
* If it's not there, return -1.
*/
char *location;
char *last_possible = buf + buf_datalen - string_len;
assert(string && string_len > 0 && buf);
if(buf_datalen < string_len)
return -1;
for(location = buf; location <= last_possible; location++)
if((*location == *string) && !memcmp(location+1, string+1, string_len-1))
return location-buf+string_len;
return -1;
}
/*
Local Variables:
mode:c
indent-tabs-mode:nil
c-basic-offset:2
End:
*/
|