1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
/* Copyright (c) 2007-2012, The Tor Project, Inc. */
/* See LICENSE for licensing information */
#if 1
/* Tor dependencies */
#include "orconfig.h"
#endif
#include <stdlib.h>
#include <string.h>
#include "torint.h"
#include "crypto.h"
#define MEMPOOL_PRIVATE
#include "mempool.h"
/* OVERVIEW:
*
* This is an implementation of memory pools for Tor cells. It may be
* useful for you too.
*
* Generally, a memory pool is an allocation strategy optimized for large
* numbers of identically-sized objects. Rather than the elaborate arena
* and coalescing strategies you need to get good performance for a
* general-purpose malloc(), pools use a series of large memory "chunks",
* each of which is carved into a bunch of smaller "items" or
* "allocations".
*
* To get decent performance, you need to:
* - Minimize the number of times you hit the underlying allocator.
* - Try to keep accesses as local in memory as possible.
* - Try to keep the common case fast.
*
* Our implementation uses three lists of chunks per pool. Each chunk can
* be either "full" (no more room for items); "empty" (no items); or
* "used" (not full, not empty). There are independent doubly-linked
* lists for each state.
*
* CREDIT:
*
* I wrote this after looking at 3 or 4 other pooling allocators, but
* without copying. The strategy this most resembles (which is funny,
* since that's the one I looked at longest ago) is the pool allocator
* underlying Python's obmalloc code. Major differences from obmalloc's
* pools are:
* - We don't even try to be threadsafe.
* - We only handle objects of one size.
* - Our list of empty chunks is doubly-linked, not singly-linked.
* (This could change pretty easily; it's only doubly-linked for
* consistency.)
* - We keep a list of full chunks (so we can have a "nuke everything"
* function). Obmalloc's pools leave full chunks to float unanchored.
*
* LIMITATIONS:
* - Not even slightly threadsafe.
* - Likes to have lots of items per chunks.
* - One pointer overhead per allocated thing. (The alternative is
* something like glib's use of an RB-tree to keep track of what
* chunk any given piece of memory is in.)
* - Only aligns allocated things to void* level: redefine ALIGNMENT_TYPE
* if you need doubles.
* - Could probably be optimized a bit; the representation contains
* a bit more info than it really needs to have.
*/
#if 1
/* Tor dependencies */
#include "util.h"
#include "compat.h"
#include "torlog.h"
#define ALLOC(x) tor_malloc(x)
#define FREE(x) tor_free(x)
#define ASSERT(x) tor_assert(x)
#undef ALLOC_CAN_RETURN_NULL
#define TOR
//#define ALLOC_ROUNDUP(p) tor_malloc_roundup(p)
/* End Tor dependencies */
#else
/* If you're not building this as part of Tor, you'll want to define the
* following macros. For now, these should do as defaults.
*/
#include <assert.h>
#define PREDICT_UNLIKELY(x) (x)
#define PREDICT_LIKELY(x) (x)
#define ALLOC(x) malloc(x)
#define FREE(x) free(x)
#define STRUCT_OFFSET(tp, member) \
((off_t) (((char*)&((tp*)0)->member)-(char*)0))
#define ASSERT(x) assert(x)
#define ALLOC_CAN_RETURN_NULL
#endif
/* Tuning parameters */
/** Largest type that we need to ensure returned memory items are aligned to.
* Change this to "double" if we need to be safe for structs with doubles. */
#define ALIGNMENT_TYPE void *
/** Increment that we need to align allocated. */
#define ALIGNMENT sizeof(ALIGNMENT_TYPE)
/** Largest memory chunk that we should allocate. */
#define MAX_CHUNK (8*(1L<<20))
/** Smallest memory chunk size that we should allocate. */
#define MIN_CHUNK 4096
typedef struct mp_allocated_t mp_allocated_t;
typedef struct mp_chunk_t mp_chunk_t;
/** Holds a single allocated item, allocated as part of a chunk. */
struct mp_allocated_t {
/** The chunk that this item is allocated in. This adds overhead to each
* allocated item, thus making this implementation inappropriate for
* very small items. */
mp_chunk_t *in_chunk;
union {
/** If this item is free, the next item on the free list. */
mp_allocated_t *next_free;
/** If this item is not free, the actual memory contents of this item.
* (Not actual size.) */
char mem[1];
/** An extra element to the union to insure correct alignment. */
ALIGNMENT_TYPE _dummy;
} u;
};
/** 'Magic' value used to detect memory corruption. */
#define MP_CHUNK_MAGIC 0x09870123
/** A chunk of memory. Chunks come from malloc; we use them */
struct mp_chunk_t {
unsigned long magic; /**< Must be MP_CHUNK_MAGIC if this chunk is valid. */
mp_chunk_t *next; /**< The next free, used, or full chunk in sequence. */
mp_chunk_t *prev; /**< The previous free, used, or full chunk in sequence. */
mp_pool_t *pool; /**< The pool that this chunk is part of. */
/** First free item in the freelist for this chunk. Note that this may be
* NULL even if this chunk is not at capacity: if so, the free memory at
* next_mem has not yet been carved into items.
*/
mp_allocated_t *first_free;
int n_allocated; /**< Number of currently allocated items in this chunk. */
int capacity; /**< Number of items that can be fit into this chunk. */
size_t mem_size; /**< Number of usable bytes in mem. */
char *next_mem; /**< Pointer into part of <b>mem</b> not yet carved up. */
char mem[FLEXIBLE_ARRAY_MEMBER]; /**< Storage for this chunk. */
};
/** Number of extra bytes needed beyond mem_size to allocate a chunk. */
#define CHUNK_OVERHEAD STRUCT_OFFSET(mp_chunk_t, mem[0])
/** Given a pointer to a mp_allocated_t, return a pointer to the memory
* item it holds. */
#define A2M(a) (&(a)->u.mem)
/** Given a pointer to a memory_item_t, return a pointer to its enclosing
* mp_allocated_t. */
#define M2A(p) ( ((char*)p) - STRUCT_OFFSET(mp_allocated_t, u.mem) )
#ifdef ALLOC_CAN_RETURN_NULL
/** If our ALLOC() macro can return NULL, check whether <b>x</b> is NULL,
* and if so, return NULL. */
#define CHECK_ALLOC(x) \
if (PREDICT_UNLIKELY(!x)) { return NULL; }
#else
/** If our ALLOC() macro can't return NULL, do nothing. */
#define CHECK_ALLOC(x)
#endif
/** Helper: Allocate and return a new memory chunk for <b>pool</b>. Does not
* link the chunk into any list. */
static mp_chunk_t *
mp_chunk_new(mp_pool_t *pool)
{
size_t sz = pool->new_chunk_capacity * pool->item_alloc_size;
#ifdef ALLOC_ROUNDUP
size_t alloc_size = CHUNK_OVERHEAD + sz;
mp_chunk_t *chunk = ALLOC_ROUNDUP(&alloc_size);
#else
mp_chunk_t *chunk = ALLOC(CHUNK_OVERHEAD + sz);
#endif
#ifdef MEMPOOL_STATS
++pool->total_chunks_allocated;
#endif
CHECK_ALLOC(chunk);
memset(chunk, 0, sizeof(mp_chunk_t)); /* Doesn't clear the whole thing. */
chunk->magic = MP_CHUNK_MAGIC;
#ifdef ALLOC_ROUNDUP
chunk->mem_size = alloc_size - CHUNK_OVERHEAD;
chunk->capacity = chunk->mem_size / pool->item_alloc_size;
#else
chunk->capacity = pool->new_chunk_capacity;
chunk->mem_size = sz;
#endif
chunk->next_mem = chunk->mem;
chunk->pool = pool;
return chunk;
}
/** Take a <b>chunk</b> that has just been allocated or removed from
* <b>pool</b>'s empty chunk list, and add it to the head of the used chunk
* list. */
static INLINE void
add_newly_used_chunk_to_used_list(mp_pool_t *pool, mp_chunk_t *chunk)
{
chunk->next = pool->used_chunks;
if (chunk->next)
chunk->next->prev = chunk;
pool->used_chunks = chunk;
ASSERT(!chunk->prev);
}
/** Return a newly allocated item from <b>pool</b>. */
void *
mp_pool_get(mp_pool_t *pool)
{
mp_chunk_t *chunk;
mp_allocated_t *allocated;
if (PREDICT_LIKELY(pool->used_chunks != NULL)) {
/* Common case: there is some chunk that is neither full nor empty. Use
* that one. (We can't use the full ones, obviously, and we should fill
* up the used ones before we start on any empty ones. */
chunk = pool->used_chunks;
} else if (pool->empty_chunks) {
/* We have no used chunks, but we have an empty chunk that we haven't
* freed yet: use that. (We pull from the front of the list, which should
* get us the most recently emptied chunk.) */
chunk = pool->empty_chunks;
/* Remove the chunk from the empty list. */
pool->empty_chunks = chunk->next;
if (chunk->next)
chunk->next->prev = NULL;
/* Put the chunk on the 'used' list*/
add_newly_used_chunk_to_used_list(pool, chunk);
ASSERT(!chunk->prev);
--pool->n_empty_chunks;
if (pool->n_empty_chunks < pool->min_empty_chunks)
pool->min_empty_chunks = pool->n_empty_chunks;
} else {
/* We have no used or empty chunks: allocate a new chunk. */
chunk = mp_chunk_new(pool);
CHECK_ALLOC(chunk);
/* Add the new chunk to the used list. */
add_newly_used_chunk_to_used_list(pool, chunk);
}
ASSERT(chunk->n_allocated < chunk->capacity);
if (chunk->first_free) {
/* If there's anything on the chunk's freelist, unlink it and use it. */
allocated = chunk->first_free;
chunk->first_free = allocated->u.next_free;
allocated->u.next_free = NULL; /* For debugging; not really needed. */
ASSERT(allocated->in_chunk == chunk);
} else {
/* Otherwise, the chunk had better have some free space left on it. */
ASSERT(chunk->next_mem + pool->item_alloc_size <=
chunk->mem + chunk->mem_size);
/* Good, it did. Let's carve off a bit of that free space, and use
* that. */
allocated = (void*)chunk->next_mem;
chunk->next_mem += pool->item_alloc_size;
allocated->in_chunk = chunk;
allocated->u.next_free = NULL; /* For debugging; not really needed. */
}
++chunk->n_allocated;
#ifdef MEMPOOL_STATS
++pool->total_items_allocated;
#endif
if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
/* This chunk just became full. */
ASSERT(chunk == pool->used_chunks);
ASSERT(chunk->prev == NULL);
/* Take it off the used list. */
pool->used_chunks = chunk->next;
if (chunk->next)
chunk->next->prev = NULL;
/* Put it on the full list. */
chunk->next = pool->full_chunks;
if (chunk->next)
chunk->next->prev = chunk;
pool->full_chunks = chunk;
}
/* And return the memory portion of the mp_allocated_t. */
return A2M(allocated);
}
/** Return an allocated memory item to its memory pool. */
void
mp_pool_release(void *item)
{
mp_allocated_t *allocated = (void*) M2A(item);
mp_chunk_t *chunk = allocated->in_chunk;
ASSERT(chunk);
ASSERT(chunk->magic == MP_CHUNK_MAGIC);
ASSERT(chunk->n_allocated > 0);
allocated->u.next_free = chunk->first_free;
chunk->first_free = allocated;
if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
/* This chunk was full and is about to be used. */
mp_pool_t *pool = chunk->pool;
/* unlink from the full list */
if (chunk->prev)
chunk->prev->next = chunk->next;
if (chunk->next)
chunk->next->prev = chunk->prev;
if (chunk == pool->full_chunks)
pool->full_chunks = chunk->next;
/* link to the used list. */
chunk->next = pool->used_chunks;
chunk->prev = NULL;
if (chunk->next)
chunk->next->prev = chunk;
pool->used_chunks = chunk;
} else if (PREDICT_UNLIKELY(chunk->n_allocated == 1)) {
/* This was used and is about to be empty. */
mp_pool_t *pool = chunk->pool;
/* Unlink from the used list */
if (chunk->prev)
chunk->prev->next = chunk->next;
if (chunk->next)
chunk->next->prev = chunk->prev;
if (chunk == pool->used_chunks)
pool->used_chunks = chunk->next;
/* Link to the empty list */
chunk->next = pool->empty_chunks;
chunk->prev = NULL;
if (chunk->next)
chunk->next->prev = chunk;
pool->empty_chunks = chunk;
/* Reset the guts of this chunk to defragment it, in case it gets
* used again. */
chunk->first_free = NULL;
chunk->next_mem = chunk->mem;
++pool->n_empty_chunks;
}
--chunk->n_allocated;
}
/** Allocate a new memory pool to hold items of size <b>item_size</b>. We'll
* try to fit about <b>chunk_capacity</b> bytes in each chunk. */
mp_pool_t *
mp_pool_new(size_t item_size, size_t chunk_capacity)
{
mp_pool_t *pool;
size_t alloc_size, new_chunk_cap;
tor_assert(item_size < SIZE_T_CEILING);
tor_assert(chunk_capacity < SIZE_T_CEILING);
tor_assert(SIZE_T_CEILING / item_size > chunk_capacity);
pool = ALLOC(sizeof(mp_pool_t));
CHECK_ALLOC(pool);
memset(pool, 0, sizeof(mp_pool_t));
/* First, we figure out how much space to allow per item. We'll want to
* use make sure we have enough for the overhead plus the item size. */
alloc_size = (size_t)(STRUCT_OFFSET(mp_allocated_t, u.mem) + item_size);
/* If the item_size is less than sizeof(next_free), we need to make
* the allocation bigger. */
if (alloc_size < sizeof(mp_allocated_t))
alloc_size = sizeof(mp_allocated_t);
/* If we're not an even multiple of ALIGNMENT, round up. */
if (alloc_size % ALIGNMENT) {
alloc_size = alloc_size + ALIGNMENT - (alloc_size % ALIGNMENT);
}
if (alloc_size < ALIGNMENT)
alloc_size = ALIGNMENT;
ASSERT((alloc_size % ALIGNMENT) == 0);
/* Now we figure out how many items fit in each chunk. We need to fit at
* least 2 items per chunk. No chunk can be more than MAX_CHUNK bytes long,
* or less than MIN_CHUNK. */
if (chunk_capacity > MAX_CHUNK)
chunk_capacity = MAX_CHUNK;
/* Try to be around a power of 2 in size, since that's what allocators like
* handing out. 512K-1 byte is a lot better than 512K+1 byte. */
chunk_capacity = (size_t) round_to_power_of_2(chunk_capacity);
while (chunk_capacity < alloc_size * 2 + CHUNK_OVERHEAD)
chunk_capacity *= 2;
if (chunk_capacity < MIN_CHUNK)
chunk_capacity = MIN_CHUNK;
new_chunk_cap = (chunk_capacity-CHUNK_OVERHEAD) / alloc_size;
tor_assert(new_chunk_cap < INT_MAX);
pool->new_chunk_capacity = (int)new_chunk_cap;
pool->item_alloc_size = alloc_size;
log_debug(LD_MM, "Capacity is %lu, item size is %lu, alloc size is %lu",
(unsigned long)pool->new_chunk_capacity,
(unsigned long)pool->item_alloc_size,
(unsigned long)(pool->new_chunk_capacity*pool->item_alloc_size));
return pool;
}
/** Helper function for qsort: used to sort pointers to mp_chunk_t into
* descending order of fullness. */
static int
mp_pool_sort_used_chunks_helper(const void *_a, const void *_b)
{
mp_chunk_t *a = *(mp_chunk_t**)_a;
mp_chunk_t *b = *(mp_chunk_t**)_b;
return b->n_allocated - a->n_allocated;
}
/** Sort the used chunks in <b>pool</b> into descending order of fullness,
* so that we preferentially fill up mostly full chunks before we make
* nearly empty chunks less nearly empty. */
static void
mp_pool_sort_used_chunks(mp_pool_t *pool)
{
int i, n=0, inverted=0;
mp_chunk_t **chunks, *chunk;
for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
++n;
if (chunk->next && chunk->next->n_allocated > chunk->n_allocated)
++inverted;
}
if (!inverted)
return;
//printf("Sort %d/%d\n",inverted,n);
chunks = ALLOC(sizeof(mp_chunk_t *)*n);
#ifdef ALLOC_CAN_RETURN_NULL
if (PREDICT_UNLIKELY(!chunks)) return;
#endif
for (i=0,chunk = pool->used_chunks; chunk; chunk = chunk->next)
chunks[i++] = chunk;
qsort(chunks, n, sizeof(mp_chunk_t *), mp_pool_sort_used_chunks_helper);
pool->used_chunks = chunks[0];
chunks[0]->prev = NULL;
for (i=1;i<n;++i) {
chunks[i-1]->next = chunks[i];
chunks[i]->prev = chunks[i-1];
}
chunks[n-1]->next = NULL;
FREE(chunks);
mp_pool_assert_ok(pool);
}
/** If there are more than <b>n</b> empty chunks in <b>pool</b>, free the
* excess ones that have been empty for the longest. If
* <b>keep_recently_used</b> is true, do not free chunks unless they have been
* empty since the last call to this function.
**/
void
mp_pool_clean(mp_pool_t *pool, int n_to_keep, int keep_recently_used)
{
mp_chunk_t *chunk, **first_to_free;
mp_pool_sort_used_chunks(pool);
ASSERT(n_to_keep >= 0);
if (keep_recently_used) {
int n_recently_used = pool->n_empty_chunks - pool->min_empty_chunks;
if (n_to_keep < n_recently_used)
n_to_keep = n_recently_used;
}
ASSERT(n_to_keep >= 0);
first_to_free = &pool->empty_chunks;
while (*first_to_free && n_to_keep > 0) {
first_to_free = &(*first_to_free)->next;
--n_to_keep;
}
if (!*first_to_free) {
pool->min_empty_chunks = pool->n_empty_chunks;
return;
}
chunk = *first_to_free;
while (chunk) {
mp_chunk_t *next = chunk->next;
chunk->magic = 0xdeadbeef;
FREE(chunk);
#ifdef MEMPOOL_STATS
++pool->total_chunks_freed;
#endif
--pool->n_empty_chunks;
chunk = next;
}
pool->min_empty_chunks = pool->n_empty_chunks;
*first_to_free = NULL;
}
/** Helper: Given a list of chunks, free all the chunks in the list. */
static void
destroy_chunks(mp_chunk_t *chunk)
{
mp_chunk_t *next;
while (chunk) {
chunk->magic = 0xd3adb33f;
next = chunk->next;
FREE(chunk);
chunk = next;
}
}
/** Free all space held in <b>pool</b> This makes all pointers returned from
* mp_pool_get(<b>pool</b>) invalid. */
void
mp_pool_destroy(mp_pool_t *pool)
{
destroy_chunks(pool->empty_chunks);
destroy_chunks(pool->used_chunks);
destroy_chunks(pool->full_chunks);
memwipe(pool, 0xe0, sizeof(mp_pool_t));
FREE(pool);
}
/** Helper: make sure that a given chunk list is not corrupt. */
static int
assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full)
{
mp_allocated_t *allocated;
int n = 0;
if (chunk)
ASSERT(chunk->prev == NULL);
while (chunk) {
n++;
ASSERT(chunk->magic == MP_CHUNK_MAGIC);
ASSERT(chunk->pool == pool);
for (allocated = chunk->first_free; allocated;
allocated = allocated->u.next_free) {
ASSERT(allocated->in_chunk == chunk);
}
if (empty)
ASSERT(chunk->n_allocated == 0);
else if (full)
ASSERT(chunk->n_allocated == chunk->capacity);
else
ASSERT(chunk->n_allocated > 0 && chunk->n_allocated < chunk->capacity);
ASSERT(chunk->capacity == pool->new_chunk_capacity);
ASSERT(chunk->mem_size ==
pool->new_chunk_capacity * pool->item_alloc_size);
ASSERT(chunk->next_mem >= chunk->mem &&
chunk->next_mem <= chunk->mem + chunk->mem_size);
if (chunk->next)
ASSERT(chunk->next->prev == chunk);
chunk = chunk->next;
}
return n;
}
/** Fail with an assertion if <b>pool</b> is not internally consistent. */
void
mp_pool_assert_ok(mp_pool_t *pool)
{
int n_empty;
n_empty = assert_chunks_ok(pool, pool->empty_chunks, 1, 0);
assert_chunks_ok(pool, pool->full_chunks, 0, 1);
assert_chunks_ok(pool, pool->used_chunks, 0, 0);
ASSERT(pool->n_empty_chunks == n_empty);
}
#ifdef TOR
/** Dump information about <b>pool</b>'s memory usage to the Tor log at level
* <b>severity</b>. */
/*FFFF uses Tor logging functions. */
void
mp_pool_log_status(mp_pool_t *pool, int severity)
{
uint64_t bytes_used = 0;
uint64_t bytes_allocated = 0;
uint64_t bu = 0, ba = 0;
mp_chunk_t *chunk;
int n_full = 0, n_used = 0;
ASSERT(pool);
for (chunk = pool->empty_chunks; chunk; chunk = chunk->next) {
bytes_allocated += chunk->mem_size;
}
log_fn(severity, LD_MM, U64_FORMAT" bytes in %d empty chunks",
U64_PRINTF_ARG(bytes_allocated), pool->n_empty_chunks);
for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
++n_used;
bu += chunk->n_allocated * pool->item_alloc_size;
ba += chunk->mem_size;
log_fn(severity, LD_MM, " used chunk: %d items allocated",
chunk->n_allocated);
}
log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
" bytes in %d partially full chunks",
U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_used);
bytes_used += bu;
bytes_allocated += ba;
bu = ba = 0;
for (chunk = pool->full_chunks; chunk; chunk = chunk->next) {
++n_full;
bu += chunk->n_allocated * pool->item_alloc_size;
ba += chunk->mem_size;
}
log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
" bytes in %d full chunks",
U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_full);
bytes_used += bu;
bytes_allocated += ba;
log_fn(severity, LD_MM, "Total: "U64_FORMAT"/"U64_FORMAT" bytes allocated "
"for cell pools are full.",
U64_PRINTF_ARG(bytes_used), U64_PRINTF_ARG(bytes_allocated));
#ifdef MEMPOOL_STATS
log_fn(severity, LD_MM, U64_FORMAT" cell allocations ever; "
U64_FORMAT" chunk allocations ever; "
U64_FORMAT" chunk frees ever.",
U64_PRINTF_ARG(pool->total_items_allocated),
U64_PRINTF_ARG(pool->total_chunks_allocated),
U64_PRINTF_ARG(pool->total_chunks_freed));
#endif
}
#endif
|