1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
|
/* Copyright (c) 2003-2004, Roger Dingledine
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2012, The Tor Project, Inc. */
/* See LICENSE for licensing information */
#ifndef TOR_CONTAINER_H
#define TOR_CONTAINER_H
#include "util.h"
/** A resizeable list of pointers, with associated helpful functionality.
*
* The members of this struct are exposed only so that macros and inlines can
* use them; all access to smartlist internals should go through the functions
* and macros defined here.
**/
typedef struct smartlist_t {
/** @{ */
/** <b>list</b> has enough capacity to store exactly <b>capacity</b> elements
* before it needs to be resized. Only the first <b>num_used</b> (\<=
* capacity) elements point to valid data.
*/
void **list;
int num_used;
int capacity;
/** @} */
} smartlist_t;
smartlist_t *smartlist_new(void);
void smartlist_free(smartlist_t *sl);
void smartlist_clear(smartlist_t *sl);
void smartlist_add(smartlist_t *sl, void *element);
void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2);
void smartlist_remove(smartlist_t *sl, const void *element);
void *smartlist_pop_last(smartlist_t *sl);
void smartlist_reverse(smartlist_t *sl);
void smartlist_string_remove(smartlist_t *sl, const char *element);
int smartlist_isin(const smartlist_t *sl, const void *element);
int smartlist_string_isin(const smartlist_t *sl, const char *element);
int smartlist_string_pos(const smartlist_t *, const char *elt);
int smartlist_string_isin_case(const smartlist_t *sl, const char *element);
int smartlist_string_num_isin(const smartlist_t *sl, int num);
int smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2);
int smartlist_digest_isin(const smartlist_t *sl, const char *element);
int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2);
void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2);
void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2);
/* smartlist_choose() is defined in crypto.[ch] */
#ifdef DEBUG_SMARTLIST
/** Return the number of items in sl.
*/
static INLINE int smartlist_len(const smartlist_t *sl);
static INLINE int smartlist_len(const smartlist_t *sl) {
tor_assert(sl);
return (sl)->num_used;
}
/** Return the <b>idx</b>th element of sl.
*/
static INLINE void *smartlist_get(const smartlist_t *sl, int idx);
static INLINE void *smartlist_get(const smartlist_t *sl, int idx) {
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(sl->num_used > idx);
return sl->list[idx];
}
static INLINE void smartlist_set(smartlist_t *sl, int idx, void *val) {
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(sl->num_used > idx);
sl->list[idx] = val;
}
#else
#define smartlist_len(sl) ((sl)->num_used)
#define smartlist_get(sl, idx) ((sl)->list[idx])
#define smartlist_set(sl, idx, val) ((sl)->list[idx] = (val))
#endif
/** Exchange the elements at indices <b>idx1</b> and <b>idx2</b> of the
* smartlist <b>sl</b>. */
static INLINE void smartlist_swap(smartlist_t *sl, int idx1, int idx2)
{
if (idx1 != idx2) {
void *elt = smartlist_get(sl, idx1);
smartlist_set(sl, idx1, smartlist_get(sl, idx2));
smartlist_set(sl, idx2, elt);
}
}
void smartlist_del(smartlist_t *sl, int idx);
void smartlist_del_keeporder(smartlist_t *sl, int idx);
void smartlist_insert(smartlist_t *sl, int idx, void *val);
void smartlist_sort(smartlist_t *sl,
int (*compare)(const void **a, const void **b));
void *smartlist_get_most_frequent(const smartlist_t *sl,
int (*compare)(const void **a, const void **b));
void smartlist_uniq(smartlist_t *sl,
int (*compare)(const void **a, const void **b),
void (*free_fn)(void *elt));
void smartlist_sort_strings(smartlist_t *sl);
void smartlist_sort_digests(smartlist_t *sl);
void smartlist_sort_digests256(smartlist_t *sl);
char *smartlist_get_most_frequent_string(smartlist_t *sl);
char *smartlist_get_most_frequent_digest256(smartlist_t *sl);
void smartlist_uniq_strings(smartlist_t *sl);
void smartlist_uniq_digests(smartlist_t *sl);
void smartlist_uniq_digests256(smartlist_t *sl);
void *smartlist_bsearch(smartlist_t *sl, const void *key,
int (*compare)(const void *key, const void **member));
int smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
int (*compare)(const void *key, const void **member),
int *found_out);
void smartlist_pqueue_add(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
int idx_field_offset,
void *item);
void *smartlist_pqueue_pop(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
int idx_field_offset);
void smartlist_pqueue_remove(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
int idx_field_offset,
void *item);
void smartlist_pqueue_assert_ok(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
int idx_field_offset);
#define SPLIT_SKIP_SPACE 0x01
#define SPLIT_IGNORE_BLANK 0x02
#define SPLIT_STRIP_SPACE 0x04
int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
int flags, int max);
char *smartlist_join_strings(smartlist_t *sl, const char *join, int terminate,
size_t *len_out) ATTR_MALLOC;
char *smartlist_join_strings2(smartlist_t *sl, const char *join,
size_t join_len, int terminate, size_t *len_out)
ATTR_MALLOC;
/** Iterate over the items in a smartlist <b>sl</b>, in order. For each item,
* assign it to a new local variable of type <b>type</b> named <b>var</b>, and
* execute the statements inside the loop body. Inside the loop, the loop
* index can be accessed as <b>var</b>_sl_idx and the length of the list can
* be accessed as <b>var</b>_sl_len.
*
* NOTE: Do not change the length of the list while the loop is in progress,
* unless you adjust the _sl_len variable correspondingly. See second example
* below.
*
* Example use:
* <pre>
* smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
* SMARTLIST_FOREACH_BEGIN(list, char *, cp) {
* printf("%d: %s\n", cp_sl_idx, cp);
* tor_free(cp);
* } SMARTLIST_FOREACH_END(cp);
* smartlist_free(list);
* </pre>
*
* Example use (advanced):
* <pre>
* SMARTLIST_FOREACH_BEGIN(list, char *, cp) {
* if (!strcmp(cp, "junk")) {
* tor_free(cp);
* SMARTLIST_DEL_CURRENT(list, cp);
* }
* } SMARTLIST_FOREACH_END(cp);
* </pre>
*/
/* Note: these macros use token pasting, and reach into smartlist internals.
* This can make them a little daunting. Here's the approximate unpacking of
* the above examples, for entertainment value:
*
* <pre>
* smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
* {
* int cp_sl_idx, cp_sl_len = smartlist_len(list);
* char *cp;
* for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
* cp = smartlist_get(list, cp_sl_idx);
* printf("%d: %s\n", cp_sl_idx, cp);
* tor_free(cp);
* }
* }
* smartlist_free(list);
* </pre>
*
* <pre>
* {
* int cp_sl_idx, cp_sl_len = smartlist_len(list);
* char *cp;
* for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
* cp = smartlist_get(list, cp_sl_idx);
* if (!strcmp(cp, "junk")) {
* tor_free(cp);
* smartlist_del(list, cp_sl_idx);
* --cp_sl_idx;
* --cp_sl_len;
* }
* }
* }
* </pre>
*/
#define SMARTLIST_FOREACH_BEGIN(sl, type, var) \
STMT_BEGIN \
int var ## _sl_idx, var ## _sl_len=(sl)->num_used; \
type var; \
for (var ## _sl_idx = 0; var ## _sl_idx < var ## _sl_len; \
++var ## _sl_idx) { \
var = (sl)->list[var ## _sl_idx];
#define SMARTLIST_FOREACH_END(var) \
var = NULL; \
} STMT_END
/**
* An alias for SMARTLIST_FOREACH_BEGIN and SMARTLIST_FOREACH_END, using
* <b>cmd</b> as the loop body. This wrapper is here for convenience with
* very short loops.
*
* By convention, we do not use this for loops which nest, or for loops over
* 10 lines or so. Use SMARTLIST_FOREACH_{BEGIN,END} for those.
*/
#define SMARTLIST_FOREACH(sl, type, var, cmd) \
SMARTLIST_FOREACH_BEGIN(sl,type,var) { \
cmd; \
} SMARTLIST_FOREACH_END(var)
/** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
* with the variable <b>var</b>, remove the current element in a way that
* won't confuse the loop. */
#define SMARTLIST_DEL_CURRENT(sl, var) \
STMT_BEGIN \
smartlist_del(sl, var ## _sl_idx); \
--var ## _sl_idx; \
--var ## _sl_len; \
STMT_END
/** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
* with the variable <b>var</b>, replace the current element with <b>val</b>.
* Does not deallocate the current value of <b>var</b>.
*/
#define SMARTLIST_REPLACE_CURRENT(sl, var, val) \
STMT_BEGIN \
smartlist_set(sl, var ## _sl_idx, val); \
STMT_END
/* Helper: Given two lists of items, possibly of different types, such that
* both lists are sorted on some common field (as determined by a comparison
* expression <b>cmpexpr</b>), and such that one list (<b>sl1</b>) has no
* duplicates on the common field, loop through the lists in lockstep, and
* execute <b>unmatched_var2</b> on items in var2 that do not appear in
* var1.
*
* WARNING: It isn't safe to add remove elements from either list while the
* loop is in progress.
*
* Example use:
* SMARTLIST_FOREACH_JOIN(routerstatus_list, routerstatus_t *, rs,
* routerinfo_list, routerinfo_t *, ri,
* tor_memcmp(rs->identity_digest, ri->identity_digest, 20),
* log_info(LD_GENERAL,"No match for %s", ri->nickname)) {
* log_info(LD_GENERAL, "%s matches routerstatus %p", ri->nickname, rs);
* } SMARTLIST_FOREACH_JOIN_END(rs, ri);
**/
/* The example above unpacks (approximately) to:
* int rs_sl_idx = 0, rs_sl_len = smartlist_len(routerstatus_list);
* int ri_sl_idx, ri_sl_len = smartlist_len(routerinfo_list);
* int rs_ri_cmp;
* routerstatus_t *rs;
* routerinfo_t *ri;
* for (; ri_sl_idx < ri_sl_len; ++ri_sl_idx) {
* ri = smartlist_get(routerinfo_list, ri_sl_idx);
* while (rs_sl_idx < rs_sl_len) {
* rs = smartlist_get(routerstatus_list, rs_sl_idx);
* rs_ri_cmp = tor_memcmp(rs->identity_digest, ri->identity_digest, 20);
* if (rs_ri_cmp > 0) {
* break;
* } else if (rs_ri_cmp == 0) {
* goto matched_ri;
* } else {
* ++rs_sl_idx;
* }
* }
* log_info(LD_GENERAL,"No match for %s", ri->nickname);
* continue;
* matched_ri: {
* log_info(LD_GENERAL,"%s matches with routerstatus %p",ri->nickname,rs);
* }
* }
*/
#define SMARTLIST_FOREACH_JOIN(sl1, type1, var1, sl2, type2, var2, \
cmpexpr, unmatched_var2) \
STMT_BEGIN \
int var1 ## _sl_idx = 0, var1 ## _sl_len=(sl1)->num_used; \
int var2 ## _sl_idx = 0, var2 ## _sl_len=(sl2)->num_used; \
int var1 ## _ ## var2 ## _cmp; \
type1 var1; \
type2 var2; \
for (; var2##_sl_idx < var2##_sl_len; ++var2##_sl_idx) { \
var2 = (sl2)->list[var2##_sl_idx]; \
while (var1##_sl_idx < var1##_sl_len) { \
var1 = (sl1)->list[var1##_sl_idx]; \
var1##_##var2##_cmp = (cmpexpr); \
if (var1##_##var2##_cmp > 0) { \
break; \
} else if (var1##_##var2##_cmp == 0) { \
goto matched_##var2; \
} else { \
++var1##_sl_idx; \
} \
} \
/* Ran out of v1, or no match for var2. */ \
unmatched_var2; \
continue; \
matched_##var2: ; \
#define SMARTLIST_FOREACH_JOIN_END(var1, var2) \
} \
STMT_END
#define DECLARE_MAP_FNS(maptype, keytype, prefix) \
typedef struct maptype maptype; \
typedef struct prefix##entry_t *prefix##iter_t; \
maptype* prefix##new(void); \
void* prefix##set(maptype *map, keytype key, void *val); \
void* prefix##get(const maptype *map, keytype key); \
void* prefix##remove(maptype *map, keytype key); \
void prefix##free(maptype *map, void (*free_val)(void*)); \
int prefix##isempty(const maptype *map); \
int prefix##size(const maptype *map); \
prefix##iter_t *prefix##iter_init(maptype *map); \
prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter); \
prefix##iter_t *prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter); \
void prefix##iter_get(prefix##iter_t *iter, keytype *keyp, void **valp); \
int prefix##iter_done(prefix##iter_t *iter); \
void prefix##assert_ok(const maptype *map)
/* Map from const char * to void *. Implemented with a hash table. */
DECLARE_MAP_FNS(strmap_t, const char *, strmap_);
/* Map from const char[DIGEST_LEN] to void *. Implemented with a hash table. */
DECLARE_MAP_FNS(digestmap_t, const char *, digestmap_);
#undef DECLARE_MAP_FNS
/** Iterates over the key-value pairs in a map <b>map</b> in order.
* <b>prefix</b> is as for DECLARE_MAP_FNS (i.e., strmap_ or digestmap_).
* The map's keys and values are of type keytype and valtype respectively;
* each iteration assigns them to keyvar and valvar.
*
* Example use:
* MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) {
* // use k and r
* } MAP_FOREACH_END.
*/
/* Unpacks to, approximately:
* {
* digestmap_iter_t *k_iter;
* for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter);
* k_iter = digestmap_iter_next(m, k_iter)) {
* const char *k;
* void *r_voidp;
* routerinfo_t *r;
* digestmap_iter_get(k_iter, &k, &r_voidp);
* r = r_voidp;
* // use k and r
* }
* }
*/
#define MAP_FOREACH(prefix, map, keytype, keyvar, valtype, valvar) \
STMT_BEGIN \
prefix##iter_t *keyvar##_iter; \
for (keyvar##_iter = prefix##iter_init(map); \
!prefix##iter_done(keyvar##_iter); \
keyvar##_iter = prefix##iter_next(map, keyvar##_iter)) { \
keytype keyvar; \
void *valvar##_voidp; \
valtype valvar; \
prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \
valvar = valvar##_voidp;
/** As MAP_FOREACH, except allows members to be removed from the map
* during the iteration via MAP_DEL_CURRENT. Example use:
*
* Example use:
* MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) {
* if (is_very_old(r))
* MAP_DEL_CURRENT(k);
* } MAP_FOREACH_END.
**/
/* Unpacks to, approximately:
* {
* digestmap_iter_t *k_iter;
* int k_del=0;
* for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter);
* k_iter = k_del ? digestmap_iter_next(m, k_iter)
* : digestmap_iter_next_rmv(m, k_iter)) {
* const char *k;
* void *r_voidp;
* routerinfo_t *r;
* k_del=0;
* digestmap_iter_get(k_iter, &k, &r_voidp);
* r = r_voidp;
* if (is_very_old(r)) {
* k_del = 1;
* }
* }
* }
*/
#define MAP_FOREACH_MODIFY(prefix, map, keytype, keyvar, valtype, valvar) \
STMT_BEGIN \
prefix##iter_t *keyvar##_iter; \
int keyvar##_del=0; \
for (keyvar##_iter = prefix##iter_init(map); \
!prefix##iter_done(keyvar##_iter); \
keyvar##_iter = keyvar##_del ? \
prefix##iter_next_rmv(map, keyvar##_iter) : \
prefix##iter_next(map, keyvar##_iter)) { \
keytype keyvar; \
void *valvar##_voidp; \
valtype valvar; \
keyvar##_del=0; \
prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \
valvar = valvar##_voidp;
/** Used with MAP_FOREACH_MODIFY to remove the currently-iterated-upon
* member of the map. */
#define MAP_DEL_CURRENT(keyvar) \
STMT_BEGIN \
keyvar##_del = 1; \
STMT_END
/** Used to end a MAP_FOREACH() block. */
#define MAP_FOREACH_END } STMT_END ;
/** As MAP_FOREACH, but does not require declaration of prefix or keytype.
* Example use:
* DIGESTMAP_FOREACH(m, k, routerinfo_t *, r) {
* // use k and r
* } DIGESTMAP_FOREACH_END.
*/
#define DIGESTMAP_FOREACH(map, keyvar, valtype, valvar) \
MAP_FOREACH(digestmap_, map, const char *, keyvar, valtype, valvar)
/** As MAP_FOREACH_MODIFY, but does not require declaration of prefix or
* keytype.
* Example use:
* DIGESTMAP_FOREACH_MODIFY(m, k, routerinfo_t *, r) {
* if (is_very_old(r))
* MAP_DEL_CURRENT(k);
* } DIGESTMAP_FOREACH_END.
*/
#define DIGESTMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
MAP_FOREACH_MODIFY(digestmap_, map, const char *, keyvar, valtype, valvar)
/** Used to end a DIGESTMAP_FOREACH() block. */
#define DIGESTMAP_FOREACH_END MAP_FOREACH_END
#define STRMAP_FOREACH(map, keyvar, valtype, valvar) \
MAP_FOREACH(strmap_, map, const char *, keyvar, valtype, valvar)
#define STRMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
MAP_FOREACH_MODIFY(strmap_, map, const char *, keyvar, valtype, valvar)
#define STRMAP_FOREACH_END MAP_FOREACH_END
void* strmap_set_lc(strmap_t *map, const char *key, void *val);
void* strmap_get_lc(const strmap_t *map, const char *key);
void* strmap_remove_lc(strmap_t *map, const char *key);
#define DECLARE_TYPED_DIGESTMAP_FNS(prefix, maptype, valtype) \
typedef struct maptype maptype; \
typedef struct prefix##iter_t prefix##iter_t; \
static INLINE maptype* prefix##new(void) \
{ \
return (maptype*)digestmap_new(); \
} \
static INLINE digestmap_t* prefix##to_digestmap(maptype *map) \
{ \
return (digestmap_t*)map; \
} \
static INLINE valtype* prefix##get(maptype *map, const char *key) \
{ \
return (valtype*)digestmap_get((digestmap_t*)map, key); \
} \
static INLINE valtype* prefix##set(maptype *map, const char *key, \
valtype *val) \
{ \
return (valtype*)digestmap_set((digestmap_t*)map, key, val); \
} \
static INLINE valtype* prefix##remove(maptype *map, const char *key) \
{ \
return (valtype*)digestmap_remove((digestmap_t*)map, key); \
} \
static INLINE void prefix##free(maptype *map, void (*free_val)(void*)) \
{ \
digestmap_free((digestmap_t*)map, free_val); \
} \
static INLINE int prefix##isempty(maptype *map) \
{ \
return digestmap_isempty((digestmap_t*)map); \
} \
static INLINE int prefix##size(maptype *map) \
{ \
return digestmap_size((digestmap_t*)map); \
} \
static INLINE prefix##iter_t *prefix##iter_init(maptype *map) \
{ \
return (prefix##iter_t*) digestmap_iter_init((digestmap_t*)map); \
} \
static INLINE prefix##iter_t *prefix##iter_next(maptype *map, \
prefix##iter_t *iter) \
{ \
return (prefix##iter_t*) digestmap_iter_next( \
(digestmap_t*)map, (digestmap_iter_t*)iter); \
} \
static INLINE prefix##iter_t *prefix##iter_next_rmv(maptype *map, \
prefix##iter_t *iter) \
{ \
return (prefix##iter_t*) digestmap_iter_next_rmv( \
(digestmap_t*)map, (digestmap_iter_t*)iter); \
} \
static INLINE void prefix##iter_get(prefix##iter_t *iter, \
const char **keyp, \
valtype **valp) \
{ \
void *v; \
digestmap_iter_get((digestmap_iter_t*) iter, keyp, &v); \
*valp = v; \
} \
static INLINE int prefix##iter_done(prefix##iter_t *iter) \
{ \
return digestmap_iter_done((digestmap_iter_t*)iter); \
}
#if SIZEOF_INT == 4
#define BITARRAY_SHIFT 5
#elif SIZEOF_INT == 8
#define BITARRAY_SHIFT 6
#else
#error "int is neither 4 nor 8 bytes. I can't deal with that."
#endif
#define BITARRAY_MASK ((1u<<BITARRAY_SHIFT)-1)
/** A random-access array of one-bit-wide elements. */
typedef unsigned int bitarray_t;
/** Create a new bit array that can hold <b>n_bits</b> bits. */
static INLINE bitarray_t *
bitarray_init_zero(unsigned int n_bits)
{
/* round up to the next int. */
size_t sz = (n_bits+BITARRAY_MASK) >> BITARRAY_SHIFT;
return tor_malloc_zero(sz*sizeof(unsigned int));
}
/** Expand <b>ba</b> from holding <b>n_bits_old</b> to <b>n_bits_new</b>,
* clearing all new bits. Returns a possibly changed pointer to the
* bitarray. */
static INLINE bitarray_t *
bitarray_expand(bitarray_t *ba,
unsigned int n_bits_old, unsigned int n_bits_new)
{
size_t sz_old = (n_bits_old+BITARRAY_MASK) >> BITARRAY_SHIFT;
size_t sz_new = (n_bits_new+BITARRAY_MASK) >> BITARRAY_SHIFT;
char *ptr;
if (sz_new <= sz_old)
return ba;
ptr = tor_realloc(ba, sz_new*sizeof(unsigned int));
/* This memset does nothing to the older excess bytes. But they were
* already set to 0 by bitarry_init_zero. */
memset(ptr+sz_old*sizeof(unsigned int), 0,
(sz_new-sz_old)*sizeof(unsigned int));
return (bitarray_t*) ptr;
}
/** Free the bit array <b>ba</b>. */
static INLINE void
bitarray_free(bitarray_t *ba)
{
tor_free(ba);
}
/** Set the <b>bit</b>th bit in <b>b</b> to 1. */
static INLINE void
bitarray_set(bitarray_t *b, int bit)
{
b[bit >> BITARRAY_SHIFT] |= (1u << (bit & BITARRAY_MASK));
}
/** Set the <b>bit</b>th bit in <b>b</b> to 0. */
static INLINE void
bitarray_clear(bitarray_t *b, int bit)
{
b[bit >> BITARRAY_SHIFT] &= ~ (1u << (bit & BITARRAY_MASK));
}
/** Return true iff <b>bit</b>th bit in <b>b</b> is nonzero. NOTE: does
* not necessarily return 1 on true. */
static INLINE unsigned int
bitarray_is_set(bitarray_t *b, int bit)
{
return b[bit >> BITARRAY_SHIFT] & (1u << (bit & BITARRAY_MASK));
}
/** A set of digests, implemented as a Bloom filter. */
typedef struct {
int mask; /**< One less than the number of bits in <b>ba</b>; always one less
* than a power of two. */
bitarray_t *ba; /**< A bit array to implement the Bloom filter. */
} digestset_t;
#define BIT(n) ((n) & set->mask)
/** Add the digest <b>digest</b> to <b>set</b>. */
static INLINE void
digestset_add(digestset_t *set, const char *digest)
{
const uint32_t *p = (const uint32_t *)digest;
const uint32_t d1 = p[0] + (p[1]>>16);
const uint32_t d2 = p[1] + (p[2]>>16);
const uint32_t d3 = p[2] + (p[3]>>16);
const uint32_t d4 = p[3] + (p[0]>>16);
bitarray_set(set->ba, BIT(d1));
bitarray_set(set->ba, BIT(d2));
bitarray_set(set->ba, BIT(d3));
bitarray_set(set->ba, BIT(d4));
}
/** If <b>digest</b> is in <b>set</b>, return nonzero. Otherwise,
* <em>probably</em> return zero. */
static INLINE int
digestset_isin(const digestset_t *set, const char *digest)
{
const uint32_t *p = (const uint32_t *)digest;
const uint32_t d1 = p[0] + (p[1]>>16);
const uint32_t d2 = p[1] + (p[2]>>16);
const uint32_t d3 = p[2] + (p[3]>>16);
const uint32_t d4 = p[3] + (p[0]>>16);
return bitarray_is_set(set->ba, BIT(d1)) &&
bitarray_is_set(set->ba, BIT(d2)) &&
bitarray_is_set(set->ba, BIT(d3)) &&
bitarray_is_set(set->ba, BIT(d4));
}
#undef BIT
digestset_t *digestset_new(int max_elements);
void digestset_free(digestset_t* set);
/* These functions, given an <b>array</b> of <b>n_elements</b>, return the
* <b>nth</b> lowest element. <b>nth</b>=0 gives the lowest element;
* <b>n_elements</b>-1 gives the highest; and (<b>n_elements</b>-1) / 2 gives
* the median. As a side effect, the elements of <b>array</b> are sorted. */
int find_nth_int(int *array, int n_elements, int nth);
time_t find_nth_time(time_t *array, int n_elements, int nth);
double find_nth_double(double *array, int n_elements, int nth);
int32_t find_nth_int32(int32_t *array, int n_elements, int nth);
uint32_t find_nth_uint32(uint32_t *array, int n_elements, int nth);
long find_nth_long(long *array, int n_elements, int nth);
static INLINE int
median_int(int *array, int n_elements)
{
return find_nth_int(array, n_elements, (n_elements-1)/2);
}
static INLINE time_t
median_time(time_t *array, int n_elements)
{
return find_nth_time(array, n_elements, (n_elements-1)/2);
}
static INLINE double
median_double(double *array, int n_elements)
{
return find_nth_double(array, n_elements, (n_elements-1)/2);
}
static INLINE uint32_t
median_uint32(uint32_t *array, int n_elements)
{
return find_nth_uint32(array, n_elements, (n_elements-1)/2);
}
static INLINE int32_t
median_int32(int32_t *array, int n_elements)
{
return find_nth_int32(array, n_elements, (n_elements-1)/2);
}
static INLINE long
median_long(long *array, int n_elements)
{
return find_nth_long(array, n_elements, (n_elements-1)/2);
}
#endif
|