aboutsummaryrefslogtreecommitdiff
path: root/doc/dir-spec.txt
blob: 89395c238129dc91e5c9faf38aec3f7c3f31a340 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
$Id$

                  Tor directory protocol for 0.1.1.x series

0. Scope and preliminaries

   This document should eventually be merged to replace and supplement the
   existing notes on directories in tor-spec.txt.

   This is not a finalized version; what we actually wind up implementing
   may be different from the system described here.

0.1. Goals

   There are several problems with the way Tor handles directory information
   in version 0.1.0.x and earlier.  Here are the problems we try to fix with
   this new design, already partially implemented in 0.1.1.x:
      1. Directories are very large and use up a lot of bandwidth: clients
         download descriptors for all router several times an hour.
      2. Every directory authority is a trust bottleneck: if a single
         directory authority lies, it can make clients believe for a time an
         arbitrarily distorted view of the Tor network.
      3. Our current "verified server" system is kind of nonsensical.
      4. Getting more directory authorities adds more points of failure and
         worsens possible partitioning attacks.

   There are two problems that remain unaddressed by this design.
      5. Requiring every client to know about every router won't scale.
      6. Requiring every directory cache to know every router won't scale.

1. Outline

   There is a small set (say, around 10) of semi-trusted directory
   authorities.  A default list of authorities is shipped with the Tor
   software. Users can change this list, but are encouraged not to do so, in
   order to avoid partitioning attacks.

   Routers periodically upload signed "descriptors" to the directory
   authorities describing their keys, capabilities, and other information.
   Routers may act as directory mirrors (also called "caches"), to reduce
   load on the directory authorities.  They announce this in their
   descriptors.

   Each directory authority periodically generates and signs a compact
   "network status" document that lists that authority's view of the current
   descriptors and status for known routers, but which does not include the
   descriptors themselves.

   Directory mirrors download, cache, and re-serve network-status documents
   to clients.

   Clients, directory mirrors, and directory authorities all use
   network-status documents to find out when their list of routers is
   out-of-date.  If it is, they download any missing router descriptors.
   Clients download missing descriptors from mirrors; mirrors and authorities
   download from authorities.  Descriptors are downloaded by the hash of the
   descriptor, not by the server's identity key: this prevents servers from
   attacking clients by giving them descriptors nobody else uses.

   All directory information is uploaded and downloaded with HTTP.

   Coordination among directory authorities is done client-side: clients
   compute a vote-like algorithm among the network-status documents they
   have, and base their decisions on the result.

1.1. What's different from 0.1.0.x?

   Clients used to download a signed concatenated set of router descriptors
   (called a "directory") from directory mirrors, regardless of which
   descriptors had changed.

   Between downloading directories, clients would download "network-status"
   documents that would list which servers were supposed to running.

   Clients would always believe the most recently published network-status
   document they were served.

   Routers used to upload fresh descriptors all the time, whether their keys
   and other information had changed or not.

2. Router operation

   The router descriptor format is unchanged from tor-spec.txt.

   ORs SHOULD generate a new router descriptor whenever any of the
   following events have occurred:

      - A period of time (18 hrs by default) has passed since the last
        time a descriptor was generated.

      - A descriptor field other than bandwidth or uptime has changed.

      - Bandwidth has changed by more than +/- 50% from the last time a
        descriptor was generated, and at least a given interval of time
        (20 mins by default) has passed since then.

      - Its uptime has been reset (by restarting).

   After generating a descriptor, ORs upload it to every directory
   authority they know, by posting it to the URL

      http://<hostname>/tor/

3. Network status format

   Directory authorities generate, sign, and compress network-status
   documents.  Directory servers SHOULD generate a fresh network-status
   document when the contents of such a document would be different from the
   last one generated, and some time (at least one second, possibly longer)
   has passed since the last one was generated.

   The network status document contains a preamble, a set of router status
   entries, and a signature, in that order.

   We use the same meta-format as used for directories and router descriptors
   in "tor-spec.txt".  Implementations MAY insert blank lines
   for clarity between sections; these blank lines are ignored.
   Implementations MUST NOT depend on blank lines in any particular location.

   As used here, "whitespace" is a sequence of 1 or more tab or space
   characters.

   The preamble contains:

      "network-status-version" -- A document format version.  For this
         specification, the version is "2".
      "dir-source" -- The authority's hostname, current IP address, and
         directory port, all separated by whitespace.
      "fingerprint" -- A base16-encoded hash of the signing key's
         fingerprint, with no additional spaces added.
      "contact" -- An arbitrary string describing how to contact the
         directory server's administrator.  Administrators should include at
         least an email address and a PGP fingerprint.
      "dir-signing-key" -- The directory server's public signing key.
      "client-versions" -- A comma-separated list of recommended client
        versions.
      "server-versions" -- A comma-separated list of recommended server
        versions.
      "published" -- The publication time for this network-status object.
      "dir-options" -- A set of flags, in any order, separated by whitespace:
          "Names" if this directory authority performs name bindings.
          "Versions" if this directory authority recommends software versions.

   The dir-options entry is optional.  The "-versions" entries are required if
   the "Versions" flag is present.  The other entries are required and must
   appear exactly once. The "network-status-version" entry must appear first;
   the others may appear in any order.  Implementations MUST ignore
   additional arguments to the items above, and MUST ignore unrecognized
   flags.

   For each router, the router entry contains:  (This format is designed for
   conciseness.)

      "r" -- followed by the following elements, in order, separated by
          whitespace:
          - The OR's nickname,
          - A hash of its identity key, encoded in base64, with trailing =
            signs removed.
          - A hash of its most recent descriptor, encoded in base64, with
            trailing = signs removed.  (The hash is calculated as for
            computing the signature of a descriptor.)
          - The publication time of its most recent descriptor, in the form
            YYYY-MM-DD HH:MM:SS, in GMT.
          - An IP address
          - An OR port
          - A directory port (or "0" for none")
      "s" -- A series of whitespace-separated status flags, in any order:
          "Authority" if the router is a directory authority.
          "Exit" if the router is useful for building general-purpose exit
             circuits.
          "Fast" if the router has high bandwidth.
          "Named" if the router's identity-nickname mapping is canonical,
             and this authority binds names.
          "Stable" if the router tends to stay up for a long time.
          "Running" if the router is currently usable.
          "Valid" if the router has been 'validated'.
          "V2Dir" if the router implements this protocol.

      The "r" entry for each router must appear first and is required.  The
      's" entry is optional.  Unrecognized flags and extra elements on the
      "r" line must be ignored.

   The signature section contains:

      "directory-signature". A signature of the rest of the document using
      the directory authority's signing key.

   We compress the network status list with zlib before transmitting it.

3.1. Establishing server status

   [[XXXXX Describe how authorities actually decide Fast, Named, Stable,
   Running, Valid

   For each OR, a directory server remembers whether the OR was running and
   functional the last time they tried to connect to it, and possibly other
   liveness information.

   Directory server administrators may label some servers or IPs as
   blacklisted, and elect not to include them in their network-status lists.

   Thus, the network-status list includes all non-blacklisted,
   non-expired, non-superseded descriptors for ORs that the directory has
   observed at least once to be running.

   Directory server administrators may decide to support name binding.  If
   they do, then they must maintain a file of nickname-to-identity-key
   mappings, and try to keep this file consistent with other directory
   servers.  If they don't, they act as clients, and report bindings made by
   other directory servers (name X is bound to identity Y if at least one
   binding directory lists it, and no directory binds X to some other Y'.)

   ]]

4. Directory server operation

   All directory authorities and directory mirrors ("directory servers")
   implement this section, except as noted.

4.1. Accepting uploads (authorities only)

   When a router posts a signed descriptor to a directory authority, the
   authority first checks whether it is well-formed and correctly
   self-signed.  If it is, the authority next verifies that the nickname
   question is already assigned to a router with a different public key.
   Finally, the authority MAY check that the router is not blacklisted
   because of its key, IP, or another reason.

   If the descriptor passes these tests, and the authority does not already
   have a descriptor for a router with this public key, it accepts the
   descriptor and remembers it.

   If the authority _does_ have a descriptor with the same public key, the
   newly uploaded descriptor is remembered if its publication time is more
   recent than the most recent old descriptor for that router, and either:
      - There are non-cosmetic differences between the old descriptor and the
        new one.
      - Enough time has passed between the descriptors' publication times.
        (Currently, 12 hours.)

   Differences between router descriptors are "non-cosmetic" if they would be
   sufficient to force an upload as described in section 2 above.

   Note that the "cosmetic difference" test only applies to uploaded
   descriptors, not to descriptors that the authority downloads from other
   authorities.

4.2. Downloading network-status documents

   All directory servers (authorities and mirrors) try to keep a fresh set of
   network-status documents from every authority.  To do so, every 5 minutes,
   an authority asks every other authority for its most recent network-status
   document.  Every 15 minutes, a mirror picks a random authority and asks it
   for the most recent network-status documents for all the authorities the
   authority knows about (including the chosen authority itself).

   Directory servers and mirrors remember and serve the most recent
   network-status document they have from each authority.  Other
   network-status documents don't need to be stored.  If the most recent
   network-status document is over 10 days old, it is discarded anyway.
   Mirrors SHOULD store and serve network-status documents from authorities
   they don't recognize, but SHOULD NOT use such documents for any other
   purpose.

4.3. Downloading and storing router descriptors

   Periodically (currently, every 10 seconds), directory servers check
   whether there are any specific descriptors (as identified by descriptor
   hash in a network-status document) that they do not have and that they
   are not currently trying to download.

   If so, the directory server launches requests to the authorities for these
   descriptors, such that each authority is only asked for descriptors listed
   in its most recent network-status.  When more than one authority lists the
   descriptor, we choose which to ask at random.

   If one of these downloads fails, we do not try to download that descriptor
   from the authority that failed to serve it again unless we receive a newer
   network-status from that authority that lists the same descriptor.

   Directory servers must potentially cache multiple descriptors for each
   router. Servers must not discard any descriptor listed by any current
   network-status document from any authority.  If there is enough space to
   store additional descriptors [XXXXXX then how do we pick.]

   Authorities SHOULD NOT download descriptors for routers that they would
   immediately reject for reasons listed in 3.1.

4.4. HTTP URLs

   "Fingerprints" in these URLs are base-16-encoded SHA1 hashes.

   The authoritative network-status published by a host should be available at:
      http://<hostname>/tor/status/authority.z

   The network-status published by a host with fingerprint
   <F> should be available at:
      http://<hostname>/tor/status/fp/<F>.z

   The network-status documents published by hosts with fingerprints
   <F1>,<F2>,<F3> should be available at:
      http://<hostname>/tor/status/fp/<F1>+<F2>+<F3>.z

   The most recent network-status documents from all known authorities,
   concatenated, should be available at:
         http://<hostname>/tor/status/all.z

   The most recent descriptor for a server whose identity key has a
   fingerprint of <F> should be available at:
      http://<hostname>/tor/server/fp/<F>.z

   The most recent descriptors for servers with identity fingerprints
   <F1>,<F2>,<F3> should be available at:
      http://<hostname>/tor/server/fp/<F1>+<F2>+<F3>.z

   (NOTE: Implementations SHOULD NOT download descriptors by identity key
   fingerprint. This allows a corrupted server (in collusion with a cache) to
   provide a unique descriptor to a client, and thereby partition that client
   from the rest of the network.)

   The descriptor for a server whose digest (in hex) is <D> should be
   available at:
      http://<hostname>/tor/server/d/<D>.z

   The most recent descriptors with digests <D1>,<D2>,<D3> should be
   available at:
      http://<hostname>/tor/server/d/<D1>+<D2>+<D3>.z

   The most recent descriptor for this server should be at:
      http://<hostname>/tor/server/authority.z

   A concatenated set of the most recent descriptors for all known servers
   should be available at:
      http://<hostname>/tor/server/all.z

   For debugging, directories SHOULD expose non-compressed objects at URLs like
   the above, but without the final ".z".

   Clients MUST handle compressed concatenated information in two forms:
     - A concatenated list of zlib-compressed objects.
     - A zlib-compressed concatenated list of objects.
   Directory servers MAY generate either format: the former requires less
   CPU, but the latter requires less bandwidth.

5. Client operation: downloading information

   Every Tor that is not a directory server (that is, clients and ORs that do
   not have a DirPort set) implements this section.

5.1. Downloading network-status documents

   Each client maintains an ordered list of directory authorities.
   Insofar as possible, clients SHOULD all use the same ordered list.

   Clients check whether they have enough recently published network-status
   documents (currently, this means that they must have a network-status
   published within the last 48 hours for over half of the authorities).
   If they do not, they download enough network-status documents so that this
   is so.

   Also, if the most recently published network-status document is over 30
   minutes old, the client downloads a network-status document.

   When choosing which documents to download, clients treat their list of
   directory authorities as a circular ring, and begin with the authority
   appearing immediately after the authority for their most recently
   published network-status document.

   If enough mirrors (currently 4) claim not to have a given network status,
   we stop trying to download that authority's network-status, until we
   download a new network-status that makes us believe that the authority in
   question is running.

   Network-status documents published over 10 hours in the past are
   discarded.

5.2. Downloading router descriptors

   Clients try to have the best descriptor for each router.  A descriptor is
   "best" if:
      * it the most recently published descriptor listed for that router by
        at least two network-status documents.
      * OR, no descriptor for that router is listed by two or more
        network-status documents, and it is the most recently published
        descriptor listed by any network-status document.

   Periodically (currently every 10 seconds) clients check whether there are
   any "downloadable" descriptors.  A descriptor is downloadable if:
      - It is the "best" descriptor for some router.
      - The descriptor was published at least 5 minutes (???) in the past.
        [This prevents clients from trying to fetch descriptors that the
        mirrors have not yet retrieved and cached.]
      - The client does not currently have it.
      - The client is not currently trying to download it.

   If at least 1/16 of known routers have downloadable descriptors, or if
   enough time (currently 10 minutes) has passed since the last time the
   client tried to download descriptors, it launches requests for all
   downloadable descriptors, as described in 5.3 below.

   When a descriptor download fails, the client notes it, and does not
   consider the descriptor downloadable again until a certain amount of time
   has passed. (Currently 0 seconds for the first failure, 60 seconds for the
   second, 5 minutes for the third, 10 minutes for the fourth, and 1 day
   thereafter.)  Periodically (currently once an hour) clients reset the
   failure count.

   No descriptors are downloaded until the client has downloaded more than
   half of the network-status documents.

5.3. Managing downloads

   When a client has no live network-status documents, it downloads
   network-status documents from a randomly chosen authority.  In all other
   cases, the client downloads from mirrors randomly chosen from among those
   believed to be V2 directory servers.  (This information comes from the
   network-status documents; see 6 below.)

   When downloading multiple router descriptors, the client chooses multiple
   mirrors so that:
     - At least 3 different mirrors are used, except when this would result
       in more than one request for under 4 descriptors.
     - No more than 128 descriptors are requested from a single mirror.
     - Otherwise, as few mirrors as possible are used.
   After choosing mirrors, the client divides the descriptors among them
   randomly.

   After receiving any response client MUST reject any network-status
   documents and descriptors that it did not request.

6. Using directory information

   Everyone besides directory authorities uses the approaches in this section
   to decide which servers to use and what their keys are likely to be.
   (Directory authorities just believe their own opinions, as in 3.1 above.)

6.1. Choosing routers for circuits.

   Tor implementations only pay attention to "live" network-status documents.
   A network status is "live" if it is the most recently downloaded network
   status document for a given directory server, and the server is a
   directory server trusted by the client, and the network-status document is
   no more than 2 days old.

   For time-sensitive information, Tor implementations focus on "recent"
   network-status documents.  A network status is "recent" if it is live, and
   if it was published in the last 60 minutes.  If there are fewer
   than 3 such documents, the most recently published 3 are "recent."  If
   there are fewer than 3 in all, all are "recent.")

   Circuits SHOULD NOT be built until the client has enough directory
   information: at least two live network-status documents, and descriptors
   for at least 1/4 of the servers believed to be running.

   A server is "listed" if it is included by more than half of the live
   network status documents.  Clients SHOULD NOT use unlisted servers.

   A server is "valid" if it is listed as valid by more than half of the live
   network-status documents.  Clients SHOULD NOT use non-valid servers unless
   specifically configured to do so.

   A server is "running" if it is listed as running by more than half of the
   recent network-status documents.  Clients SHOULD NOT try to use
   non-running servers.

   A server is believed to be a directory mirror if it is listed as a V2
   directory by more than half of the recent network-status documents.

6.1. Managing naming

   In order to provide human-memorable names for individual server
   identities, some directory servers bind names to IDs.  Clients handle
   names in two ways:

   When a client encounters a name it has not mapped before:

      If all the live "Naming" network-status documents the client has
      claim that the name binds to some identity ID, and the client has at
      least three live network-status documents, the client maps the name to
      ID.

   If a client encounters a name it has mapped before:

      It uses the last-mapped identity value, unless all of the "Naming"
      network status documents that list the name bind it to some other
      identity.

   When a user tries to refer to a router with a name that does not have a
   mapping under the above rules, the implementation SHOULD warn the user.
   After giving the warning, the implementation MAY use a router that at
   least one Naming authority maps the name to, so long as no other naming
   authority maps that name to a different router.

6.2. Software versions

   Implementations of Tor SHOULD warn when it has live network-statuses from
   more than half of the authorities, and it is running a software version
   not listed on more than half of the live "Versioning" network-status
   documents.

TODO:
    - Resolve XXXXs
    - Are the magic numbers above sane?

    - Client-knowledge partitioning is worrisome.  Most versions of this
      don't seem to be worse than the Danezis-Murdoch tracing attack, since
      an attacker can't do more than deduce probable exits from entries (or
      vice versa).  But what about when the client connects to A and B but in
      a different order?  How bad can it be partitioned based on its
      knowledge?