aboutsummaryrefslogtreecommitdiff
path: root/doc/spec/proposals/174-optimistic-data-server.txt
diff options
context:
space:
mode:
Diffstat (limited to 'doc/spec/proposals/174-optimistic-data-server.txt')
-rw-r--r--doc/spec/proposals/174-optimistic-data-server.txt242
1 files changed, 0 insertions, 242 deletions
diff --git a/doc/spec/proposals/174-optimistic-data-server.txt b/doc/spec/proposals/174-optimistic-data-server.txt
deleted file mode 100644
index d97c45e90..000000000
--- a/doc/spec/proposals/174-optimistic-data-server.txt
+++ /dev/null
@@ -1,242 +0,0 @@
-Filename: 174-optimistic-data-server.txt
-Title: Optimistic Data for Tor: Server Side
-Author: Ian Goldberg
-Created: 2-Aug-2010
-Status: Open
-
-Overview:
-
-When a SOCKS client opens a TCP connection through Tor (for an HTTP
-request, for example), the query latency is about 1.5x higher than it
-needs to be. Simply, the problem is that the sequence of data flows
-is this:
-
-1. The SOCKS client opens a TCP connection to the OP
-2. The SOCKS client sends a SOCKS CONNECT command
-3. The OP sends a BEGIN cell to the Exit
-4. The Exit opens a TCP connection to the Server
-5. The Exit returns a CONNECTED cell to the OP
-6. The OP returns a SOCKS CONNECTED notification to the SOCKS client
-7. The SOCKS client sends some data (the GET request, for example)
-8. The OP sends a DATA cell to the Exit
-9. The Exit sends the GET to the server
-10. The Server returns the HTTP result to the Exit
-11. The Exit sends the DATA cells to the OP
-12. The OP returns the HTTP result to the SOCKS client
-
-Note that the Exit node knows that the connection to the Server was
-successful at the end of step 4, but is unable to send the HTTP query to
-the server until step 9.
-
-This proposal (as well as its upcoming sibling concerning the client
-side) aims to reduce the latency by allowing:
-1. SOCKS clients to optimistically send data before they are notified
- that the SOCKS connection has completed successfully
-2. OPs to optimistically send DATA cells on streams in the CONNECT_WAIT
- state
-3. Exit nodes to accept and queue DATA cells while in the
- EXIT_CONN_STATE_CONNECTING state
-
-This particular proposal deals with #3.
-
-In this way, the flow would be as follows:
-
-1. The SOCKS client opens a TCP connection to the OP
-2. The SOCKS client sends a SOCKS CONNECT command, followed immediately
- by data (such as the GET request)
-3. The OP sends a BEGIN cell to the Exit, followed immediately by DATA
- cells
-4. The Exit opens a TCP connection to the Server
-5. The Exit returns a CONNECTED cell to the OP, and sends the queued GET
- request to the Server
-6. The OP returns a SOCKS CONNECTED notification to the SOCKS client,
- and the Server returns the HTTP result to the Exit
-7. The Exit sends the DATA cells to the OP
-8. The OP returns the HTTP result to the SOCKS client
-
-Motivation:
-
-This change will save one OP<->Exit round trip (down to one from two).
-There are still two SOCKS Client<->OP round trips (negligible time) and
-two Exit<->Server round trips. Depending on the ratio of the
-Exit<->Server (Internet) RTT to the OP<->Exit (Tor) RTT, this will
-decrease the latency by 25 to 50 percent. Experiments validate these
-predictions. [Goldberg, PETS 2010 rump session; see
-https://thunk.cs.uwaterloo.ca/optimistic-data-pets2010-rump.pdf ]
-
-Design:
-
-The current code actually correctly handles queued data at the Exit; if
-there is queued data in a EXIT_CONN_STATE_CONNECTING stream, that data
-will be immediately sent when the connection succeeds. If the
-connection fails, the data will be correctly ignored and freed. The
-problem with the current server code is that the server currently
-drops DATA cells on streams in the EXIT_CONN_STATE_CONNECTING state.
-Also, if you try to queue data in the EXIT_CONN_STATE_RESOLVING state,
-bad things happen because streams in that state don't yet have
-conn->write_event set, and so some existing sanity checks (any stream
-with queued data is at least potentially writable) are no longer sound.
-
-The solution is to simply not drop received DATA cells while in the
-EXIT_CONN_STATE_CONNECTING state. Also do not send SENDME cells in this
-state, so that the OP cannot send more than one window's worth of data
-to be queued at the Exit. Finally, patch the sanity checks so that
-streams in the EXIT_CONN_STATE_RESOLVING state that have buffered data
-can pass.
-
-If no clients ever send such optimistic data, the new code will never be
-executed, and the behaviour of Tor will not change. When clients begin
-to send optimistic data, the performance of those clients' streams will
-improve.
-
-After discussion with nickm, it seems best to just have the server
-version number be the indicator of whether a particular Exit supports
-optimistic data. (If a client sends optimistic data to an Exit which
-does not support it, the data will be dropped, and the client's request
-will fail to complete.) What do version numbers for hypothetical future
-protocol-compatible implementations look like, though?
-
-Security implications:
-
-Servers (for sure the Exit, and possibly others, by watching the
-pattern of packets) will be able to tell that a particular client
-is using optimistic data. This will be discussed more in the sibling
-proposal.
-
-On the Exit side, servers will be queueing a little bit extra data, but
-no more than one window. Clients today can cause Exits to queue that
-much data anyway, simply by establishing a Tor connection to a slow
-machine, and sending one window of data.
-
-Specification:
-
-tor-spec section 6.2 currently says:
-
- The OP waits for a RELAY_CONNECTED cell before sending any data.
- Once a connection has been established, the OP and exit node
- package stream data in RELAY_DATA cells, and upon receiving such
- cells, echo their contents to the corresponding TCP stream.
- RELAY_DATA cells sent to unrecognized streams are dropped.
-
-It is not clear exactly what an "unrecognized" stream is, but this last
-sentence would be changed to say that RELAY_DATA cells received on a
-stream that has processed a RELAY_BEGIN cell and has not yet issued a
-RELAY_END or a RELAY_CONNECTED cell are queued; that queue is processed
-immediately after a RELAY_CONNECTED cell is issued for the stream, or
-freed after a RELAY_END cell is issued for the stream.
-
-The earlier part of this section will be addressed in the sibling
-proposal.
-
-Compatibility:
-
-There are compatibility issues, as mentioned above. OPs MUST NOT send
-optimistic data to Exit nodes whose version numbers predate (something).
-OPs MAY send optimistic data to Exit nodes whose version numbers match
-or follow that value. (But see the question about independent server
-reimplementations, above.)
-
-Implementation:
-
-Here is a simple patch. It seems to work with both regular streams and
-hidden services, but there may be other corner cases I'm not aware of.
-(Do streams used for directory fetches, hidden services, etc. take a
-different code path?)
-
-diff --git a/src/or/connection.c b/src/or/connection.c
-index 7b1493b..f80cd6e 100644
---- a/src/or/connection.c
-+++ b/src/or/connection.c
-@@ -2845,7 +2845,13 @@ _connection_write_to_buf_impl(const char *string, size_t len,
- return;
- }
-
-- connection_start_writing(conn);
-+ /* If we receive optimistic data in the EXIT_CONN_STATE_RESOLVING
-+ * state, we don't want to try to write it right away, since
-+ * conn->write_event won't be set yet. Otherwise, write data from
-+ * this conn as the socket is available. */
-+ if (conn->state != EXIT_CONN_STATE_RESOLVING) {
-+ connection_start_writing(conn);
-+ }
- if (zlib) {
- conn->outbuf_flushlen += buf_datalen(conn->outbuf) - old_datalen;
- } else {
-@@ -3382,7 +3388,11 @@ assert_connection_ok(connection_t *conn, time_t now)
- tor_assert(conn->s < 0);
-
- if (conn->outbuf_flushlen > 0) {
-- tor_assert(connection_is_writing(conn) || conn->write_blocked_on_bw ||
-+ /* With optimistic data, we may have queued data in
-+ * EXIT_CONN_STATE_RESOLVING while the conn is not yet marked to writing.
-+ * */
-+ tor_assert(conn->state == EXIT_CONN_STATE_RESOLVING ||
-+ connection_is_writing(conn) || conn->write_blocked_on_bw ||
- (CONN_IS_EDGE(conn) && TO_EDGE_CONN(conn)->edge_blocked_on_circ));
- }
-
-diff --git a/src/or/relay.c b/src/or/relay.c
-index fab2d88..e45ff70 100644
---- a/src/or/relay.c
-+++ b/src/or/relay.c
-@@ -1019,6 +1019,9 @@ connection_edge_process_relay_cell(cell_t *cell, circuit_t *circ,
- relay_header_t rh;
- unsigned domain = layer_hint?LD_APP:LD_EXIT;
- int reason;
-+ int optimistic_data = 0; /* Set to 1 if we receive data on a stream
-+ that's in the EXIT_CONN_STATE_RESOLVING
-+ or EXIT_CONN_STATE_CONNECTING states.*/
-
- tor_assert(cell);
- tor_assert(circ);
-@@ -1038,9 +1041,20 @@ connection_edge_process_relay_cell(cell_t *cell, circuit_t *circ,
- /* either conn is NULL, in which case we've got a control cell, or else
- * conn points to the recognized stream. */
-
-- if (conn && !connection_state_is_open(TO_CONN(conn)))
-- return connection_edge_process_relay_cell_not_open(
-- &rh, cell, circ, conn, layer_hint);
-+ if (conn && !connection_state_is_open(TO_CONN(conn))) {
-+ if ((conn->_base.state == EXIT_CONN_STATE_CONNECTING ||
-+ conn->_base.state == EXIT_CONN_STATE_RESOLVING) &&
-+ rh.command == RELAY_COMMAND_DATA) {
-+ /* We're going to allow DATA cells to be delivered to an exit
-+ * node in state EXIT_CONN_STATE_CONNECTING or
-+ * EXIT_CONN_STATE_RESOLVING. This speeds up HTTP, for example. */
-+ log_warn(domain, "Optimistic data received.");
-+ optimistic_data = 1;
-+ } else {
-+ return connection_edge_process_relay_cell_not_open(
-+ &rh, cell, circ, conn, layer_hint);
-+ }
-+ }
-
- switch (rh.command) {
- case RELAY_COMMAND_DROP:
-@@ -1090,7 +1104,9 @@ connection_edge_process_relay_cell(cell_t *cell, circuit_t *circ,
- log_debug(domain,"circ deliver_window now %d.", layer_hint ?
- layer_hint->deliver_window : circ->deliver_window);
-
-- circuit_consider_sending_sendme(circ, layer_hint);
-+ if (!optimistic_data) {
-+ circuit_consider_sending_sendme(circ, layer_hint);
-+ }
-
- if (!conn) {
- log_info(domain,"data cell dropped, unknown stream (streamid %d).",
-@@ -1107,7 +1123,9 @@ connection_edge_process_relay_cell(cell_t *cell, circuit_t *circ,
- stats_n_data_bytes_received += rh.length;
- connection_write_to_buf(cell->payload + RELAY_HEADER_SIZE,
- rh.length, TO_CONN(conn));
-- connection_edge_consider_sending_sendme(conn);
-+ if (!optimistic_data) {
-+ connection_edge_consider_sending_sendme(conn);
-+ }
- return 0;
- case RELAY_COMMAND_END:
- reason = rh.length > 0 ?
-
-Performance and scalability notes:
-
-There may be more RAM used at Exit nodes, as mentioned above, but it is
-transient.