aboutsummaryrefslogtreecommitdiff
path: root/src/common/mempool.c
diff options
context:
space:
mode:
authorNick Mathewson <nickm@torproject.org>2007-04-11 00:30:34 +0000
committerNick Mathewson <nickm@torproject.org>2007-04-11 00:30:34 +0000
commit51e4b8d7068a3489fb5cb45a8ebcc20036fd0d35 (patch)
treecad4e30bb647186680938182bcd0592917acf4ea /src/common/mempool.c
parent28de06b8e654800bb1221467d6c8cbbf8d19987d (diff)
downloadtor-51e4b8d7068a3489fb5cb45a8ebcc20036fd0d35.tar
tor-51e4b8d7068a3489fb5cb45a8ebcc20036fd0d35.tar.gz
r12338@catbus: nickm | 2007-04-10 20:29:05 -0400
Document memory pool implementation, and tweak it even mor. See? Programming is fun. svn:r9940
Diffstat (limited to 'src/common/mempool.c')
-rw-r--r--src/common/mempool.c247
1 files changed, 180 insertions, 67 deletions
diff --git a/src/common/mempool.c b/src/common/mempool.c
index 39bcbfc70..b3c375253 100644
--- a/src/common/mempool.c
+++ b/src/common/mempool.c
@@ -1,6 +1,6 @@
/* Copyright 2007 Nick Mathewson */
/* See LICENSE for licensing information */
-/* $Id: /tor/trunk/src/common/util.c 12153 2007-03-12T03:11:12.797278Z nickm $ */
+/* $Id$ */
#include <stdlib.h>
#include <string.h>
@@ -8,10 +8,48 @@
#include "mempool.h"
/* OVERVIEW:
- * DOCDOC
- */
-
-/* DRAWBACKS:
+ *
+ * This is an implementation of memory pools for Tor cells. It may be
+ * useful for you too.
+ *
+ * Generally, a memory pool is an allocation strategy optimized for large
+ * numbers of identically-sized objects. Rather than the elaborate arena
+ * and coalescing strategeis you need to get good performance for a
+ * general-purpose malloc(), pools use a series of large memory "chunks",
+ * each of which is carved into a bunch of smaller "items" or
+ * "allocations".
+ *
+ * To get decent performance, you need to:
+ * - Minimize the number of times you hit the underlying allocator.
+ * - Try to keep accesses as local in memory as possible.
+ * - Try to keep the common case fast.
+ *
+ * Our implementation uses three lists of chunks per pool. Each chunk can
+ * be either "full" (no more room for items); "empty" (no items); or
+ * "used" (not full, not empty). There are independent doubly-linked
+ * lists for each state.
+ *
+ * CREDIT:
+ *
+ * I wrote this after looking at 3 or 4 other pooling allocators, but
+ * without copying. The strategy this most resembles (which is funny,
+ * since that's the one I looked at longest ago) the pool allocator
+ * underlying Python's obmalloc code. Major differences from obmalloc's
+ * pools are:
+ * - We don't even try to be threadsafe.
+ * - We only handle objects of one size.
+ * - Our list of empty chunks is doubly-linked, not singly-linked.
+ * (This could change pretty easily; it's only doubly-linked for
+ * consistency.)
+ * - We keep a list of full chunks (so we can have a "nuke everything"
+ * function). Obmalloc's pools leave full chunks to float unanchored.
+ *
+ * [XXXX020 Another way to support 'nuke everything' would be to keep
+ * _all_ the chunks in a doubly-linked-list. This would have more
+ * space overhead per chunk, but less pointer manipulation overhead
+ * than the current approach.]
+ *
+ * LIMITATIONS:
* - Not even slightly threadsafe.
* - Likes to have lots of items per chunks.
* - One pointer overhead per allocated thing. (The alternative is
@@ -24,12 +62,6 @@
* - probably, chunks should always be a power of 2.
*/
-/* NOTES:
- * - The algorithm is similar to the one used by Python, but assumes that
- * we'll know in advance which objects we want to pool, and doesn't
- * try to handle a zillion objects of weird different sizes.
- */
-
#if 1
/* Tor dependencies */
#include "orconfig.h"
@@ -39,8 +71,12 @@
#define ALLOC(x) tor_malloc(x)
#define FREE(x) tor_free(x)
#define ASSERT(x) tor_assert(x)
+#undef ALLOC_CAN_RETURN_NULL
/* End Tor dependencies */
#else
+/* If you're not building this as part of Tor, you'll want to define the
+ * following macros. For now, these should do as defaults.
+ */
#include <assert.h>
#define PREDICT_UNLIKELY(x) (x)
#define PREDICT_LIKELY(x) (x)
@@ -49,63 +85,90 @@
#define STRUCT_OFFSET(tp, member) \
((off_t) (((char*)&((tp*)0)->member)-(char*)0))
#define ASSERT(x) assert(x)
+#define ALLOC_CAN_RETURN_NULL
#endif
/* Tuning parameters */
-/** DOCDOC */
+/** Largest type that we need to ensure returned memory items are aligned to.
+ * Change this to "double" if we need to be safe for structs with doubles. */
#define ALIGNMENT_TYPE void *
-/** DOCDOC */
-#define ALIGNMENT sizeof(void*)
-/** DOCDOC */
+/** Increment that we need to align allocated */
+#define ALIGNMENT sizeof(ALIGNMENT_TYPE)
+/** Largest memory chunk that we should allocate. */
#define MAX_CHUNK (8*(1L<<20))
-/** DOCDOC */
+/** Smallest memory chunk size that we should allocate. */
#define MIN_CHUNK 4096
typedef struct mp_allocated_t mp_allocated_t;
+typedef struct mp_chunk_t mp_chunk_t;
-/** DOCDOC */
+/** Holds a single allocated item, allocated as part of a chunk. */
struct mp_allocated_t {
+ /** The chunk that this item is allocated in. This adds overhead to each
+ * allocated item, thus making this implementation inappropriate for
+ * very small items. */
mp_chunk_t *in_chunk;
union {
+ /** If this item is free, the next item on the free list. */
mp_allocated_t *next_free;
+ /** If this item is not free, the actual memory contents of this item.
+ * (Not actual size.) */
char mem[1];
+ /** An extra element to the union to insure correct alignment. */
ALIGNMENT_TYPE _dummy;
};
};
-/** DOCDOC */
+/** 'Magic' value used to detect memory corruption. */
+#define MP_CHUNK_MAGIC 0x09870123
+
+/** A chunk of memory. Chunks come from malloc; we use them */
struct mp_chunk_t {
- unsigned long magic;
- mp_chunk_t *next;
- mp_chunk_t *prev;
- mp_pool_t *pool;
+ unsigned long magic; /**< Must be MP_CHUNK_MAGIC if this chunk is valid. */
+ mp_chunk_t *next; /**< The next free, used, or full chunk in sequence. */
+ mp_chunk_t *prev; /**< The previous free, used, or full chunk in sequence. */
+ mp_pool_t *pool; /**< The pool that this chunk is part of */
+ /** First free item in the freelist for this chunk. Note that this may be
+ * NULL even if this chunk is not at capacity: if so, the free memory at
+ * next_mem has not yet been carved into items.
+ */
mp_allocated_t *first_free;
- int n_allocated;
- int capacity;
- size_t mem_size;
- char *next_mem;
- char mem[1];
+ int n_allocated; /**< Number of currently allocated items in this chunk */
+ int capacity; /**< Largest number of items that can be fit into this chunk */
+ size_t mem_size; /**< Number of usable bytes in mem. */
+ char *next_mem; /**< Pointer into part of <b>mem</b> not yet carved up. */
+ char mem[1]; /**< Storage for this chunk. (Not actual size.) */
};
-/** DOCDOC */
-#define MP_CHUNK_MAGIC 0x09870123
-/** DOCDOC */
+/** Number of extra bytes needed beyond mem_size to allocate a chunk. */
#define CHUNK_OVERHEAD (sizeof(mp_chunk_t)-1)
-/** DOCDOC */
+/** Given a pointer to a mp_allocated_t, return a pointer to the memory
+ * item it holds. */
#define A2M(a) (&(a)->mem[0])
-/** DOCDOC */
+/** Given a pointer to a memory_item_t, return a pointer to its enclosing
+ * mp_allocated_t. */
#define M2A(p) ( ((char*)p) - STRUCT_OFFSET(mp_allocated_t, mem) )
-/* INVARIANT: every chunk can hold 2 or more items. */
+#ifdef ALLOC_CAN_RETURN_NULL
+/** If our ALLOC() macro can return NULL, check whether <b>x</b> is NULL,
+ * and if so, return NULL. */
+#define CHECK_ALLOC(x) \
+ if (PREDICT_UNLIKELY(!x)) { return NULL; }
+#else
+/** If our ALLOC() macro can't return NULL, do nothing. */
+#define CHECK_ALLOC(x)
+#endif
-/** DOCDOC */
+/** Helper: Allocate and return a new memory chunk for <b>pool</b>. Does not
+ * link the chunk into any list. */
static mp_chunk_t *
mp_chunk_new(mp_pool_t *pool)
{
size_t sz = pool->new_chunk_capacity * pool->item_alloc_size;
mp_chunk_t *chunk = ALLOC(CHUNK_OVERHEAD + sz);
+ CHECK_ALLOC(chunk);
memset(chunk, 0, sizeof(mp_chunk_t)); /* Doesn't clear the whole thing. */
chunk->magic = MP_CHUNK_MAGIC;
chunk->capacity = pool->new_chunk_capacity;
@@ -115,29 +178,44 @@ mp_chunk_new(mp_pool_t *pool)
return chunk;
}
-/** DOCDOC */
+/** Return an newly allocated item from <b>pool</b>. */
void *
mp_pool_get(mp_pool_t *pool)
{
mp_chunk_t *chunk;
mp_allocated_t *allocated;
+
if (PREDICT_LIKELY(pool->used_chunks != NULL)) {
+ /* Common case: there is some chunk that is neither full nor empty. Use
+ * that one. (We can't use the full ones, obviously, and we should fill
+ * up the used ones before we start on any empty ones. */
chunk = pool->used_chunks;
+
} else if (pool->empty_chunks) {
- /* Put the most recently emptied chunk on the used list. */
+ /* We have no used chunks, but we have an empty chunk that we haven't
+ * freed yet: use that. (We pull from the front of the list, which should
+ * get us the most recently emptied chunk.) */
chunk = pool->empty_chunks;
+
+ /* Remove the chunk from the empty list. */
pool->empty_chunks = chunk->next;
if (chunk->next)
chunk->next->prev = NULL;
+
+ /* Put the chunk on the 'used' list*/
chunk->next = pool->used_chunks;
if (chunk->next)
chunk->next->prev = chunk;
pool->used_chunks = chunk;
+
ASSERT(!chunk->prev);
--pool->n_empty_chunks;
} else {
- /* Allocate a new chunk and add it to the used list. */
+ /* We have no used or empty chunks: allocate a new chunk. */
chunk = mp_chunk_new(pool);
+ CHECK_ALLOC(chunk);
+
+ /* Add the new chunk to the used list. */
chunk->next = pool->used_chunks;
if (chunk->next)
chunk->next->prev = chunk;
@@ -148,40 +226,52 @@ mp_pool_get(mp_pool_t *pool)
ASSERT(chunk->n_allocated < chunk->capacity);
if (chunk->first_free) {
+ /* If there's anything on the chunk's freelist, unlink it and use it. */
allocated = chunk->first_free;
chunk->first_free = allocated->next_free;
- allocated->next_free = NULL; /* debugging */
+ allocated->next_free = NULL; /* For debugging; not really needed. */
+ ASSERT(allocated->in_chunk == chunk);
} else {
+ /* Otherwise, the chunk had better have some free space left on it. */
ASSERT(chunk->next_mem + pool->item_alloc_size <=
chunk->mem + chunk->mem_size);
+
+ /* Good, it did. Let's carve off a bit of that free space, and use
+ * that. */
allocated = (void*)chunk->next_mem;
chunk->next_mem += pool->item_alloc_size;
allocated->in_chunk = chunk;
+ allocated->next_free = NULL; /* For debugging; not really needed. */
}
++chunk->n_allocated;
+
if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
- /* This is now a full chunk. */
+ /* This chunk just became full. */
ASSERT(chunk == pool->used_chunks);
ASSERT(chunk->prev == NULL);
+
+ /* Take it off the used list. */
pool->used_chunks = chunk->next;
if (chunk->next)
chunk->next->prev = NULL;
+ /* Put it on the full list. */
chunk->next = pool->full_chunks;
if (chunk->next)
chunk->next->prev = chunk;
pool->full_chunks = chunk;
}
+ /* And return the memory portion of the mp_allocated_t. */
return A2M(allocated);
}
-/** DOCDOC */
+/** Return an allocated memory item to its memory pool. */
void
-mp_pool_release(void *_item)
+mp_pool_release(void *item)
{
- mp_allocated_t *allocated = (void*) M2A(_item);
+ mp_allocated_t *allocated = (void*) M2A(item);
mp_chunk_t *chunk = allocated->in_chunk;
ASSERT(chunk);
@@ -194,7 +284,7 @@ mp_pool_release(void *_item)
if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
/* This chunk was full and is about to be used. */
mp_pool_t *pool = chunk->pool;
- /* unlink from full */
+ /* unlink from the full list */
if (chunk->prev)
chunk->prev->next = chunk->next;
if (chunk->next)
@@ -202,7 +292,7 @@ mp_pool_release(void *_item)
if (chunk == pool->full_chunks)
pool->full_chunks = chunk->next;
- /* link to used */
+ /* link to the used list. */
chunk->next = pool->used_chunks;
chunk->prev = NULL;
if (chunk->next)
@@ -211,7 +301,8 @@ mp_pool_release(void *_item)
} else if (PREDICT_UNLIKELY(chunk->n_allocated == 1)) {
/* This was used and is about to be empty. */
mp_pool_t *pool = chunk->pool;
- /* unlink from used */
+
+ /* Unlink from the used list */
if (chunk->prev)
chunk->prev->next = chunk->next;
if (chunk->next)
@@ -219,23 +310,26 @@ mp_pool_release(void *_item)
if (chunk == pool->used_chunks)
pool->used_chunks = chunk->next;
- /* link to empty */
+ /* Link to the empty list */
chunk->next = pool->empty_chunks;
chunk->prev = NULL;
if (chunk->next)
chunk->next->prev = chunk;
pool->empty_chunks = chunk;
- /* reset guts to defragment this chunk. */
+ /* Reset the guts of this chunk to defragment it, in case it gets
+ * used again. */
chunk->first_free = NULL;
chunk->next_mem = chunk->mem;
++pool->n_empty_chunks;
}
+
--chunk->n_allocated;
}
-/** DOCDOC */
+/** Allocate a new memory pool to hold items of size <b>item_size</b>. We'll
+ * try to fit about <b>chunk_capacity</b> items in each chunk. */
mp_pool_t *
mp_pool_new(size_t item_size, size_t chunk_capacity)
{
@@ -243,29 +337,35 @@ mp_pool_new(size_t item_size, size_t chunk_capacity)
size_t alloc_size;
pool = ALLOC(sizeof(mp_pool_t));
+ CHECK_ALLOC(pool);
memset(pool, 0, sizeof(mp_pool_t));
- /* First, minimal size with overhead. */
+ /* First, we figure out how much space to allow per item. We'll want to
+ * use make sure we have enough for the overhead plus the item size. */
alloc_size = STRUCT_OFFSET(mp_allocated_t, mem) + item_size;
+ /* If the item_size is less than sizeof(next_free), we need to make
+ * the allocation bigger. */
if (alloc_size < sizeof(mp_allocated_t))
alloc_size = sizeof(mp_allocated_t);
- /* Then, round up to alignment. */
+ /* If we're not an even multiple of ALIGNMENT, round up. */
if (alloc_size % ALIGNMENT) {
alloc_size = alloc_size + ALIGNMENT - (alloc_size % ALIGNMENT);
}
if (alloc_size < ALIGNMENT)
alloc_size = ALIGNMENT;
-
ASSERT((alloc_size % ALIGNMENT) == 0);
+ /* Now we figure out how many items fit in each chunk. We need to fit at
+ * least 2 items per chunk. No chunk can be more than MAX_CHUNK bytes long,
+ * or less than MIN_CHUNK. */
+ /* XXXX020 Try a bit harder here: we want to be a bit less than a power of
+ 2, not a bit over. */
if (chunk_capacity > MAX_CHUNK)
chunk_capacity = MAX_CHUNK;
-
if (chunk_capacity < alloc_size * 2 + CHUNK_OVERHEAD)
chunk_capacity = alloc_size * 2 + CHUNK_OVERHEAD;
-
- if (chunk_capacity < MIN_CHUNK) /* Guess system page size. */
+ if (chunk_capacity < MIN_CHUNK)
chunk_capacity = MIN_CHUNK;
pool->new_chunk_capacity = (chunk_capacity-CHUNK_OVERHEAD) / alloc_size;
@@ -274,23 +374,33 @@ mp_pool_new(size_t item_size, size_t chunk_capacity)
return pool;
}
-/** DOCDOC */
+/** If there are more than <b>n</b> empty chunks in <b>pool</b>, free the
+ * exces ones that have been empty for the longest. */
void
-mp_pool_clean(mp_pool_t *pool)
+mp_pool_clean(mp_pool_t *pool, int n)
{
- if (pool->empty_chunks) {
- mp_chunk_t *next, *chunk = pool->empty_chunks->next;
- while (chunk) {
- next = chunk->next;
- FREE(chunk);
- chunk = next;
- }
- pool->empty_chunks->next = NULL;
- pool->n_empty_chunks = 1;
+ mp_chunk_t *chunk, **first_to_free;
+ first_to_free = &pool->empty_chunks;
+ while (*first_to_free && n > 0) {
+ first_to_free = &(*first_to_free)->next;
+ --n;
+ }
+ if (!*first_to_free)
+ return;
+
+ chunk = *first_to_free;
+ while (chunk) {
+ mp_chunk_t *next = chunk->next;
+ chunk->magic = 0xdeadbeef;
+ FREE(chunk);
+ --pool->n_empty_chunks;
+ chunk = next;
}
+
+ *first_to_free = NULL;
}
-/** DOCDOC */
+/** Helper: Given a list of chunks, free all the chunks in the list. */
static void
destroy_chunks(mp_chunk_t *chunk)
{
@@ -303,7 +413,8 @@ destroy_chunks(mp_chunk_t *chunk)
}
}
-/** DOCDOC */
+/** Free all space held in <b>pool</b> This makes all pointers returned from
+ * mp_pool_get(<b>pool</b>) invalid. */
void
mp_pool_destroy(mp_pool_t *pool)
{
@@ -314,6 +425,7 @@ mp_pool_destroy(mp_pool_t *pool)
FREE(pool);
}
+/** Helper: make sure that a given chunk list is not corrupt. */
static int
assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full)
{
@@ -353,6 +465,7 @@ assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full)
return n;
}
+/** Fail with an assertion if <b>pool</b> is not internally consistent. */
void
mp_pool_assert_ok(mp_pool_t *pool)
{