aboutsummaryrefslogtreecommitdiff
path: root/gnu/packages/graph.scm
blob: 02c80f0682680df99b55d14d2032672951005046 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
;;; GNU Guix --- Functional package management for GNU
;;; Copyright © 2017, 2018, 2019, 2020, 2022 Ricardo Wurmus <rekado@elephly.net>
;;; Copyright © 2018 Joshua Sierles, Nextjournal <joshua@nextjournal.com>
;;; Copyright © 2018, 2020, 2022 Tobias Geerinckx-Rice <me@tobias.gr>
;;; Copyright © 2019, 2021, 2022 Efraim Flashner <efraim@flashner.co.il>
;;; Copyright © 2019 Andreas Enge <andreas@enge.fr>
;;; Copyright © 2020 Alexander Krotov <krotov@iitp.ru>
;;; Copyright © 2020 Pierre Langlois <pierre.langlos@gmx.com>
;;; Copyright © 2021 Vinicius Monego <monego@posteo.net>
;;; Copyright © 2021 Alexandre Hannud Abdo <abdo@member.fsf.org>
;;; Copyright © 2021, 2022 Maxim Cournoyer <maxim.cournoyer@gmail.com>
;;; Copyright © 2022 Marius Bakke <marius@gnu.org>
;;;
;;; This file is part of GNU Guix.
;;;
;;; GNU Guix is free software; you can redistribute it and/or modify it
;;; under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 3 of the License, or (at
;;; your option) any later version.
;;;
;;; GNU Guix is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with GNU Guix.  If not, see <http://www.gnu.org/licenses/>.

(define-module (gnu packages graph)
  #:use-module (guix download)
  #:use-module (guix gexp)
  #:use-module (guix git-download)
  #:use-module (guix packages)
  #:use-module (guix utils)
  #:use-module (guix build-system cmake)
  #:use-module (guix build-system gnu)
  #:use-module (guix build-system python)
  #:use-module (guix build-system r)
  #:use-module ((guix licenses) #:prefix license:)
  #:use-module (gnu packages)
  #:use-module (gnu packages autotools)
  #:use-module (gnu packages bioconductor)
  #:use-module (gnu packages bioinformatics)
  #:use-module (gnu packages boost)
  #:use-module (gnu packages check)
  #:use-module (gnu packages compression)
  #:use-module (gnu packages cran)
  #:use-module (gnu packages datastructures)
  #:use-module (gnu packages gd)
  #:use-module (gnu packages graphics)
  #:use-module (gnu packages graphviz)
  #:use-module (gnu packages gtk)
  #:use-module (gnu packages maths)
  #:use-module (gnu packages multiprecision)
  #:use-module (gnu packages ncurses)
  #:use-module (gnu packages pkg-config)
  #:use-module (gnu packages python)
  #:use-module (gnu packages python-build)
  #:use-module (gnu packages python-science)
  #:use-module (gnu packages python-web)
  #:use-module (gnu packages python-xyz)
  #:use-module (gnu packages statistics)
  #:use-module (gnu packages swig)
  #:use-module (gnu packages time)
  #:use-module (gnu packages xml))

(define-public plfit
  (package
    (name "plfit")
    (version "0.9.3")
    (source (origin
              (method git-fetch)
              (uri (git-reference
                    (url "https://github.com/ntamas/plfit")
                    (commit version)))
              (file-name (git-file-name name version))
              (sha256
               (base32
                "03x5jbvg8vwr92682swy58ljxrhqwmga1xzd0cpfbfmda41gm2fb"))))
    (build-system cmake-build-system)
    (arguments
     '(#:configure-flags (list "-DBUILD_SHARED_LIBS=ON")))
    (home-page "https://github.com/ntamas/plfit")
    (synopsis "Tool for fitting power-law distributions to empirical data")
    (description "The @command{plfit} command fits power-law distributions to
empirical (discrete or continuous) data, according to the method of Clauset,
Shalizi and Newman (@cite{Clauset A, Shalizi CR and Newman MEJ: Power-law
distributions in empirical data.  SIAM Review 51, 661-703 (2009)}).")
    (license license:gpl2+)))

(define-public igraph
  (package
    (name "igraph")
    (version "0.9.8")
    (source
     (origin
       (method url-fetch)
       (uri (string-append "https://github.com/igraph/igraph/releases/"
                           "download/" version "/igraph-" version ".tar.gz"))
       (modules '((guix build utils)))
       (snippet '(begin
                   ;; Fully unbundle igraph (see:
                   ;; https://github.com/igraph/igraph/issues/1897).
                   (delete-file-recursively "vendor")
                   (substitute* "CMakeLists.txt"
                     (("add_subdirectory\\(vendor\\).*")
                      ""))
                   ;; Help CMake to find our plfit headers.
                   (substitute* "etc/cmake/FindPLFIT.cmake"
                     (("^  NAMES plfit.h.*" all)
                      (string-append all
                                     "  PATH_SUFFIXES plfit")))
                   (substitute* '("src/CMakeLists.txt"
                                  "etc/cmake/benchmark_helpers.cmake")
                     ;; Remove bundling related variables.
                     ((".*_IS_VENDORED.*")
                      ""))))
       (sha256
        (base32 "15v3ydq95gahnas37cip637hvc2nwrmk76xp0nv3gq53rrrk9a7r"))))
    (build-system cmake-build-system)
    (arguments
     '(#:configure-flags (list "-DBUILD_SHARED_LIBS=ON")))
    (native-inputs (list pkg-config))
    (inputs
     (list arpack-ng
           gmp
           glpk
           libxml2
           lapack
           openblas
           plfit
           suitesparse))
    (home-page "https://igraph.org")
    (synopsis "Network analysis and visualization")
    (description
     "This package provides a library for the analysis of networks and graphs.
It can handle large graphs very well and provides functions for generating
random and regular graphs, graph visualization, centrality methods and much
more.")
    (license license:gpl2+)))

(define-public python-igraph
  (package
    (inherit igraph)
    (name "python-igraph")
    (version "0.9.11")
    (source (origin
              (method git-fetch)
              ;; The PyPI archive lacks tests.
              (uri (git-reference
                    (url "https://github.com/igraph/python-igraph")
                    (commit version)))
              (file-name (git-file-name name version))
              (sha256
               (base32
                "1xlr0cnf3a1vs9n2psvgrmjhld4n1xr79kkjqzby4pxxyzk1bydn"))))
    (build-system python-build-system)
    (arguments
     (list
      #:phases
      #~(modify-phases %standard-phases
          (add-after 'unpack 'specify-libigraph-location
            (lambda _
              (let ((igraph #$(this-package-input "igraph")))
                (substitute* "setup.py"
                  (("(LIBIGRAPH_FALLBACK_INCLUDE_DIRS = ).*" _ var)
                   (string-append
                    var (format #f "[~s]~%" (string-append igraph
                                                           "/include/igraph"))))
                  (("(LIBIGRAPH_FALLBACK_LIBRARY_DIRS = ).*" _ var)
                   (string-append
                    var (format #f "[~s]~%" (string-append igraph "/lib"))))))))
          (replace 'check
            (lambda* (#:key tests? #:allow-other-keys)
              (when tests?
                (invoke "pytest" "-v")))))))
    (inputs
     (list igraph))
    (propagated-inputs
     (list python-texttable))
    (native-inputs
     (list python-pytest))
    (home-page "https://igraph.org/python/")
    (synopsis "Python bindings for the igraph network analysis library")))

(define-public r-rbiofabric
  (let ((commit "666c2ae8b0a537c006592d067fac6285f71890ac")
        (revision "1"))
    (package
      (name "r-rbiofabric")
      (version (string-append "0.3-" revision "." (string-take commit 7)))
      (source (origin
                (method git-fetch)
                (uri (git-reference
                      (url "https://github.com/wjrl/RBioFabric")
                      (commit commit)))
                (file-name (string-append name "-" version "-checkout"))
                (sha256
                 (base32
                  "1yahqrcrqpbcywv73y9rlmyz8apdnp08afialibrr93ch0p06f8z"))))
      (build-system r-build-system)
      (propagated-inputs
       (list r-igraph))
      (home-page "http://www.biofabric.org/")
      (synopsis "BioFabric network visualization")
      (description "This package provides an implementation of the function
@code{bioFabric} for creating scalable network digrams where nodes are
represented by horizontal lines, and edges are represented by vertical
lines.")
      (license license:expat))))

(define-public python-plotly
  (package
    (name "python-plotly")
    (version "5.6.0")
    (source (origin
              (method git-fetch)
              (uri (git-reference
                    (url "https://github.com/plotly/plotly.py")
                    (commit (string-append "v" version))))
              (file-name (git-file-name name version))
              (sha256
               (base32
                "0kc9v5ampq2paw6sls6zdchvqvis7b1z8xhdvlhz5xxdr1vj5xnn"))))
    (build-system python-build-system)
    (arguments
     `(#:phases
       (modify-phases %standard-phases
          (add-before 'build 'skip-npm
            ;; npm is not packaged so build without it
            (lambda _
              (setenv "SKIP_NPM" "T")))
         (add-after 'unpack 'chdir
           (lambda _
             (chdir "packages/python/plotly")
             #t))
         (replace 'check
           (lambda* (#:key tests? #:allow-other-keys)
             (when tests?
               (invoke "pytest" "-x" "plotly/tests/test_core")
               (invoke "pytest" "-x" "plotly/tests/test_io")
               ;; FIXME: Add optional dependencies and enable their tests.
               ;; (invoke "pytest" "-x" "plotly/tests/test_optional")
               (invoke "pytest" "_plotly_utils/tests")))))))
    (native-inputs
     (list python-ipywidgets python-pytest python-xarray))
    (propagated-inputs
     (list python-ipython
           python-pandas
           python-pillow
           python-requests
           python-retrying
           python-six
           python-tenacity
           python-statsmodels))
    (home-page "https://plotly.com/python/")
    (synopsis "Interactive plotting library for Python")
    (description "Plotly's Python graphing library makes interactive,
publication-quality graphs online.  Examples of how to make line plots, scatter
plots, area charts, bar charts, error bars, box plots, histograms, heatmaps,
subplots, multiple-axes, polar charts, and bubble charts.")
    (license license:expat)))

(define-public python-plotly-2.4.1
  (package (inherit python-plotly)
    (version "2.4.1")
    (source
      (origin
        (method url-fetch)
        (uri (pypi-uri "plotly" version))
        (sha256
         (base32
          "0s9gk2fl53x8wwncs3fwii1vzfngr0sskv15v3mpshqmrqfrk27m"))))
   (native-inputs '())
   (propagated-inputs
    (list python-decorator
          python-nbformat
          python-pandas
          python-pytz
          python-requests
          python-six))
    (arguments
     '(#:tests? #f)))) ; The tests are not distributed in the release

(define-public python-louvain
  (package
    (name "python-louvain")
    (version "0.16")
    (source
     (origin
       (method url-fetch)
       (uri (pypi-uri "python-louvain" version))
       (patches (search-patches "python-louvain-fix-test.patch"))
       (sha256
        (base32 "0sx53l555rwq0z7if8agirjgw4ddp8r9b949wwz8vlig03sjvfmp"))))
    (build-system python-build-system)
    (native-inputs
     (list python-setuptools))          ;for use_2to3 support
    (propagated-inputs
     (list python-networkx python-numpy))
    (home-page "https://github.com/taynaud/python-louvain")
    (synopsis "Louvain algorithm for community detection")
    (description
     "This package provides a pure Python implementation of the Louvain
algorithm for community detection in large networks.")
    (license license:bsd-3)))

(define-public python-louvain-0.7
  (package
    (name "python-louvain")
    (version "0.7.1")
    ;; The tarball on Pypi does not include the tests.
    (source (origin
              (method git-fetch)
              (uri (git-reference
                    (url "https://github.com/vtraag/louvain-igraph")
                    (commit version)))
              (file-name (git-file-name name version))
              (sha256
               (base32
                "1g6b5c2jgwagnhnqh859g61h7x6a81d8hm3g6mkin6kzwafww3g2"))))
    (build-system python-build-system)
    (arguments
     (list
      #:phases
      #~(modify-phases %standard-phases
          (add-before 'build 'pretend-version
            ;; The version string is usually derived via setuptools-scm, but
            ;; without the git metadata available this fails.
            (lambda _
              (setenv "SETUPTOOLS_SCM_PRETEND_VERSION" #$version)))
          (add-before 'build 'find-igraph
            (lambda* (#:key inputs #:allow-other-keys)
              (setenv "IGRAPH_EXTRA_INCLUDE_PATH"
                      (string-append (assoc-ref inputs "igraph")
                                     "/include/igraph:"
                                     (getenv "C_INCLUDE_PATH")))
              (setenv "IGRAPH_EXTRA_LIBRARY_PATH"
                      (getenv "LIBRARY_PATH")))))))
    (propagated-inputs
     (list python-ddt python-igraph))
    (inputs
     (list igraph))
    (native-inputs
     (list pkg-config
           python-pytest
           python-setuptools-scm
           python-wheel))
    (home-page "https://github.com/vtraag/louvain-igraph")
    (synopsis "Algorithm for methods of community detection in large networks")
    (description
     "This package provides an implementation of the Louvain algorithm for use
with igraph.  Louvain is a general algorithm for methods of community
detection in large networks.

This package has been superseded by the @code{leidenalg} package and should
not be used for new projects.")
    (license license:gpl3+)))

(define-public faiss
  (package
    (name "faiss")
    (version "1.5.0")
    (source (origin
              (method git-fetch)
              (uri (git-reference
                    (url "https://github.com/facebookresearch/faiss")
                    (commit (string-append "v" version))))
              (file-name (git-file-name name version))
              (sha256
               (base32
                "0pk15jfa775cy2pqmzq62nhd6zfjxmpvz5h731197c28aq3zw39w"))
              (modules '((guix build utils)))
              (snippet
               '(begin
                  (substitute* "utils.cpp"
                    (("#include <immintrin.h>")
                     "#ifdef __SSE__\n#include <immintrin.h>\n#endif"))
                  #t))))
    (build-system cmake-build-system)
    (arguments
     `(#:configure-flags
       (list "-DBUILD_WITH_GPU=OFF"  ; thanks, but no thanks, CUDA.
             "-DBUILD_TUTORIAL=OFF") ; we don't need those
       #:phases
       (modify-phases %standard-phases
         (add-after 'unpack 'prepare-build
           (lambda _
             (let ((features (list ,@(let ((system (or (%current-target-system)
                                                       (%current-system))))
                                       (cond
                                        ((string-prefix? "x86_64" system)
                                         '("-mavx" "-msse2" "-mpopcnt"))
                                        ((string-prefix? "i686" system)
                                         '("-msse2" "-mpopcnt"))
                                        (else
                                         '()))))))
               (substitute* "CMakeLists.txt"
                 (("-m64") "")
                 (("-mpopcnt") "") ; only some architectures
                 (("-msse4")
                  (string-append
                   (string-join features)
                   " -I" (getcwd)))
                 ;; Build also the shared library
                 (("ARCHIVE DESTINATION lib")
                  "LIBRARY DESTINATION lib")
                 (("add_library.*" m)
                  "\
add_library(objlib OBJECT ${faiss_cpu_headers} ${faiss_cpu_cpp})
set_property(TARGET objlib PROPERTY POSITION_INDEPENDENT_CODE 1)
add_library(${faiss_lib}_static STATIC $<TARGET_OBJECTS:objlib>)
add_library(${faiss_lib} SHARED $<TARGET_OBJECTS:objlib>)
install(TARGETS ${faiss_lib}_static ARCHIVE DESTINATION lib)
\n")))

             ;; See https://github.com/facebookresearch/faiss/issues/520
             (substitute* "IndexScalarQuantizer.cpp"
               (("#define USE_AVX") ""))

             ;; Make header files available for compiling tests.
             (mkdir-p "faiss")
             (for-each (lambda (file)
                         (mkdir-p (string-append "faiss/" (dirname file)))
                         (copy-file file (string-append "faiss/" file)))
                       (find-files "." "\\.h$"))
             #t))
         (replace 'check
           (lambda _
             (invoke "make" "-C" "tests"
                     (format #f "-j~a" (parallel-job-count)))))
         (add-after 'install 'remove-tests
           (lambda* (#:key outputs #:allow-other-keys)
             (delete-file-recursively
              (string-append (assoc-ref outputs "out")
                             "/test"))
             #t)))))
    (inputs
     (list openblas))
    (native-inputs
     (list googletest))
    (home-page "https://github.com/facebookresearch/faiss")
    (synopsis "Efficient similarity search and clustering of dense vectors")
    (description "Faiss is a library for efficient similarity search and
clustering of dense vectors.  It contains algorithms that search in sets of
vectors of any size, up to ones that possibly do not fit in RAM.  It also
contains supporting code for evaluation and parameter tuning.")
    (license license:bsd-3)))

(define-public python-faiss
  (package (inherit faiss)
    (name "python-faiss")
    (build-system python-build-system)
    (arguments
     `(#:phases
       (modify-phases %standard-phases
         (add-after 'unpack 'chdir
           (lambda _ (chdir "python") #t))
         (add-after 'chdir 'build-swig
           (lambda* (#:key inputs #:allow-other-keys)
             (with-output-to-file "../makefile.inc"
               (lambda ()
                 (let ((python-version ,(version-major+minor (package-version python))))
                   (format #t "\
PYTHONCFLAGS =-I~a/include/python~a/ -I~a/lib/python~a/site-packages/numpy/core/include
LIBS = -lpython~a -lfaiss
SHAREDFLAGS = -shared -fopenmp
CXXFLAGS = -fpermissive -fopenmp -fPIC
CPUFLAGS = ~{~a ~}~%"
                           (assoc-ref inputs "python*") python-version
                           (assoc-ref inputs "python-numpy") python-version
                           python-version
                           (list ,@(let ((system (or (%current-target-system)
                                                     (%current-system))))
                                     (cond
                                       ((string-prefix? "x86_64" system)
                                        '("-mavx" "-msse2" "-mpopcnt"))
                                       ((string-prefix? "i686" system)
                                        '("-msse2" "-mpopcnt"))
                                       (else
                                         '()))))))))
             (substitute* "Makefile"
               (("../libfaiss.a") ""))
             (invoke "make" "cpu"))))))
    (inputs
     `(("faiss" ,faiss)
       ("openblas" ,openblas)
       ("python*" ,python)
       ("swig" ,swig)))
    (propagated-inputs
     (list python-matplotlib python-numpy))
    (description "Faiss is a library for efficient similarity search and
clustering of dense vectors.  This package provides Python bindings to the
Faiss library.")))

(define-public python-leidenalg
  (package
    (name "python-leidenalg")
    (version "0.8.10")
    (source
     (origin
       (method url-fetch)
       (uri (pypi-uri "leidenalg" version))
       (sha256
        (base32
         "1hbvagp1yyazvl7cid7mii5263qi48lpkq543n5w71qysgz1f0v7"))))
    (build-system python-build-system)
    (arguments
     '(#:tests? #f                      ;tests are not included
       #:phases (modify-phases %standard-phases
                  (add-after 'unpack 'fix-requirements
                    (lambda _
                      (substitute* "setup.py"
                        (("self.external = False")
                         "self.external = True")
                        (("self.use_pkgconfig = False")
                         "self.use_pkgconfig = True")
                        (("python-igraph >=")
                         "igraph >=")))))))
    (native-inputs
     (list pkg-config python-setuptools-scm))
    (inputs
     (list igraph))
    (propagated-inputs
     (list python-igraph))
    (home-page "https://github.com/vtraag/leidenalg")
    (synopsis "Community detection in large networks")
    (description
     "Leiden is a general algorithm for methods of community detection in
large networks.  This package implements the Leiden algorithm in C++ and
exposes it to Python.  Besides the relative flexibility of the implementation,
it also scales well, and can be run on graphs of millions of nodes (as long as
they can fit in memory).  The core function is @code{find_partition} which
finds the optimal partition using the Leiden algorithm, which is an extension
of the Louvain algorithm, for a number of different methods.")
    (license license:gpl3+)))

(define-public edge-addition-planarity-suite
  (package
    (name "edge-addition-planarity-suite")
    (version "3.0.2.0")
    (source
     (origin
       (method git-fetch)
       (uri (git-reference
              (url (string-append "https://github.com/graph-algorithms/"
                                  name))
              (commit (string-append "Version_" version))))
       (file-name (git-file-name name version))
       (sha256
        (base32
         "1c7bnxgiz28mqsq3a3msznmjq629w0qqjynm2rqnnjn2qpc22h3i"))))
    (build-system gnu-build-system)
    (native-inputs
     (list autoconf automake libtool))
    (synopsis "Embedding of planar graphs")
    (description "The package provides a reference implementation of the
linear time edge addition algorithm for embedding planar graphs and
isolating planarity obstructions.")
    (license license:bsd-3)
    (home-page
      "https://github.com/graph-algorithms/edge-addition-planarity-suite")))

(define-public rw
  (package
    (name "rw")
    ;; There is a version 0.8, but the tarball is broken with symlinks
    ;; to /usr/share.
    (version "0.7")
    (source (origin
              (method url-fetch)
              (uri (string-append "mirror://sourceforge/rankwidth/"
                                  "rw-" version ".tar.gz"))
       (sha256
        (base32
         "1rv2v42x2506x7f10349m1wpmmfxrv9l032bkminni2gbip9cjg0"))))
    (build-system gnu-build-system)
    (native-inputs
     (list pkg-config))
    (inputs
     (list igraph))
    (home-page "https://sourceforge.net/projects/rankwidth/")
    (synopsis "Rank-width and rank-decomposition of graphs")
    (description "rw computes rank-width and rank-decompositions
of graphs.")
    (license license:gpl2+)))

(define-public mscgen
  (package
    (name "mscgen")
    (version "0.20")
    (source
     (origin
       (method url-fetch)
       (uri (string-append "http://www.mcternan.me.uk/mscgen/software/mscgen-src-"
                           version ".tar.gz"))
       (sha256
        (base32
         "08yw3maxhn5fl1lff81gmcrpa4j9aas4mmby1g9w5qcr0np82d1w"))))
    (build-system gnu-build-system)
    (native-inputs
     (list pkg-config))
    (inputs
     (list gd))
    (home-page "http://www.mcternan.me.uk/mscgen/")
    (synopsis "Message Sequence Chart Generator")
    (description "Mscgen is a small program that parses Message Sequence Chart
descriptions and produces PNG, SVG, EPS or server side image maps (ismaps) as
the output.  Message Sequence Charts (MSCs) are a way of representing entities
and interactions over some time period and are often used in combination with
SDL.  MSCs are popular in Telecoms to specify how protocols operate although
MSCs need not be complicated to create or use.  Mscgen aims to provide a simple
text language that is clear to create, edit and understand, which can also be
transformed into common image formats for display or printing.")
    (license license:gpl2+)))

(define-public python-graph-tool
  (package
    (name "python-graph-tool")
    (version "2.45")
    (source (origin
              (method url-fetch)
              (uri (string-append
                    "https://downloads.skewed.de/graph-tool/graph-tool-"
                    version ".tar.bz2"))
              (sha256
               (base32
                "0s46qqg454kwq2px7x1a4ckryclkxnrz1r7gj6bv40nsrynafbgr"))))
    (build-system gnu-build-system)
    (arguments
     `(#:imported-modules (,@%gnu-build-system-modules
                           (guix build python-build-system))
       #:modules (,@%gnu-build-system-modules
                  ((guix build python-build-system) #:select (site-packages)))
       #:configure-flags
       (list (string-append "--with-boost="
                            (assoc-ref %build-inputs "boost"))
             (string-append "--with-python-module-path="
                            (site-packages %build-inputs %outputs)))))
    (native-inputs
     (list ncurses pkg-config))
    (inputs
     (list boost
           cairomm-1.14
           cgal
           expat
           gmp
           gtk+
           python-wrapper
           sparsehash))
    (propagated-inputs
     (list python-matplotlib python-numpy python-pycairo python-scipy))
    (synopsis "Manipulate and analyze graphs with Python efficiently")
    (description "Graph-tool is an efficient Python module for manipulation
and statistical analysis of graphs (a.k.a. networks).  Contrary to most other
Python modules with similar functionality, the core data structures and
algorithms are implemented in C++, making extensive use of template
metaprogramming, based heavily on the Boost Graph Library.  This confers it a
level of performance that is comparable (both in memory usage and computation
time) to that of a pure C/C++ library.")
    (home-page "https://graph-tool.skewed.de/")
    (license license:lgpl3+)))