aboutsummaryrefslogtreecommitdiff
path: root/gnu/packages
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/packages')
-rw-r--r--gnu/packages/machine-learning.scm50
1 files changed, 49 insertions, 1 deletions
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm
index b35e9b72c6..cfeb1daf63 100644
--- a/gnu/packages/machine-learning.scm
+++ b/gnu/packages/machine-learning.scm
@@ -23,7 +23,12 @@
#:use-module (guix download)
#:use-module (guix build-system gnu)
#:use-module (gnu packages)
- #:use-module (gnu packages python))
+ #:use-module (gnu packages boost)
+ #:use-module (gnu packages compression)
+ #:use-module (gnu packages gcc)
+ #:use-module (gnu packages maths)
+ #:use-module (gnu packages python)
+ #:use-module (gnu packages xml))
(define-public libsvm
(package
@@ -96,3 +101,46 @@ classification.")
(inputs
`(("python" ,python)))
(synopsis "Python bindings of libSVM")))
+
+(define-public randomjungle
+ (package
+ (name "randomjungle")
+ (version "2.1.0")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (string-append
+ "http://www.imbs-luebeck.de/imbs/sites/default/files/u59/"
+ "randomjungle-" version ".tar_.gz"))
+ (sha256
+ (base32
+ "12c8rf30cla71swx2mf4ww9mfd8jbdw5lnxd7dxhyw1ygrvg6y4w"))))
+ (build-system gnu-build-system)
+ (arguments
+ `(#:configure-flags
+ (list (string-append "--with-boost="
+ (assoc-ref %build-inputs "boost")))
+ #:phases
+ (modify-phases %standard-phases
+ (add-before
+ 'configure 'set-CXXFLAGS
+ (lambda _
+ (setenv "CXXFLAGS" "-fpermissive ")
+ #t)))))
+ (inputs
+ `(("boost" ,boost)
+ ("gsl" ,gsl)
+ ("libxml2" ,libxml2)
+ ("zlib" ,zlib)))
+ (native-inputs
+ `(("gfortran" ,gfortran-4.8)))
+ (home-page "http://www.imbs-luebeck.de/imbs/de/node/227/")
+ (synopsis "Implementation of the Random Forests machine learning method")
+ (description
+ "Random Jungle is an implementation of Random Forests. It is supposed to
+analyse high dimensional data. In genetics, it can be used for analysing big
+Genome Wide Association (GWA) data. Random Forests is a powerful machine
+learning method. Most interesting features are variable selection, missing
+value imputation, classifier creation, generalization error estimation and
+sample proximities between pairs of cases.")
+ (license license:gpl3+)))