aboutsummaryrefslogtreecommitdiff
path: root/gnu/packages
diff options
context:
space:
mode:
authorNicolas Goaziou <mail@nicolasgoaziou.fr>2019-06-19 21:43:12 +0200
committerNicolas Goaziou <mail@nicolasgoaziou.fr>2019-06-19 21:43:12 +0200
commit0c842e3a59da42d344f054b246e870eba708f779 (patch)
tree78bc0bf3b1233b8e0b8683737d3d34eb066b074b /gnu/packages
parent7c5f623192d4d316ce62270cbdb9daa7848c323d (diff)
downloadguix-0c842e3a59da42d344f054b246e870eba708f779.tar
guix-0c842e3a59da42d344f054b246e870eba708f779.tar.gz
gnu: Add ratpoints.
* gnu/packages/maths.scm (ratpoints): New variable. * gnu/packages/patches/ratpoints-sturm_and_rp_private.patch: New file. * gnu/local.mk (dist_patch_DATA): Reference patch.
Diffstat (limited to 'gnu/packages')
-rw-r--r--gnu/packages/maths.scm41
-rw-r--r--gnu/packages/patches/ratpoints-sturm_and_rp_private.patch194
2 files changed, 235 insertions, 0 deletions
diff --git a/gnu/packages/maths.scm b/gnu/packages/maths.scm
index 6d8fb9cec5..fc57801354 100644
--- a/gnu/packages/maths.scm
+++ b/gnu/packages/maths.scm
@@ -5003,3 +5003,44 @@ command-line tools, and an Application Programming Interface (API).
This package provides the static libraries required to run programs
compiled against the nauty library.")
(license license:asl2.0)))
+
+(define-public ratpoints
+ (package
+ (name "ratpoints")
+ (version "2.1.3")
+ (source (origin
+ (method url-fetch)
+ (uri (string-append
+ "http://www.mathe2.uni-bayreuth.de/stoll/programs/"
+ "ratpoints-" version ".tar.gz"))
+ (sha256
+ (base32
+ "0zhad84sfds7izyksbqjmwpfw4rvyqk63yzdjd3ysd32zss5bgf4"))
+ (patches
+ ;; Taken from
+ ;; <https://git.sagemath.org/sage.git/plain/build/pkgs/ratpoints/patches/>
+ (search-patches "ratpoints-sturm_and_rp_private.patch"))))
+ (build-system gnu-build-system)
+ (arguments
+ `(#:test-target "test"
+ #:make-flags
+ (list (string-append "INSTALL_DIR=" (assoc-ref %outputs "out")))
+ #:phases
+ (modify-phases %standard-phases
+ (delete 'configure) ;no configure script
+ (add-before 'install 'create-install-directories
+ (lambda* (#:key outputs #:allow-other-keys)
+ (let ((out (assoc-ref outputs "out")))
+ (mkdir-p out)
+ (with-directory-excursion out
+ (for-each (lambda (d) (mkdir-p d))
+ '("bin" "include" "lib"))))
+ #t)))))
+ (inputs
+ `(("gmp" ,gmp)))
+ (home-page "http://www.mathe2.uni-bayreuth.de/stoll/programs/")
+ (synopsis "Find rational points on hyperelliptic curves")
+ (description "Ratpoints tries to find all rational points within
+a given height bound on a hyperelliptic curve in a very efficient way,
+by using an optimized quadratic sieve algorithm.")
+ (license license:gpl2+)))
diff --git a/gnu/packages/patches/ratpoints-sturm_and_rp_private.patch b/gnu/packages/patches/ratpoints-sturm_and_rp_private.patch
new file mode 100644
index 0000000000..664198c4de
--- /dev/null
+++ b/gnu/packages/patches/ratpoints-sturm_and_rp_private.patch
@@ -0,0 +1,194 @@
+diff --git a/rp-private.h b/rp-private.h
+index b4c7dad..0c7193e 100644
+--- a/rp-private.h
++++ b/rp-private.h
+@@ -36,7 +36,7 @@
+ #define LONG_SHIFT ((LONG_LENGTH == 16) ? 4 : \
+ (LONG_LENGTH == 32) ? 5 : \
+ (LONG_LENGTH == 64) ? 6 : 0)
+-#define LONG_MASK (~(-1L<<LONG_SHIFT))
++#define LONG_MASK (~(-(1L<<LONG_SHIFT)))
+
+ /* Check if SSE instructions can be used.
+ We assume that one SSE word of 128 bit is two long's,
+diff --git a/sturm.c b/sturm.c
+index c78d7c6..5fd2cf5 100644
+--- a/sturm.c
++++ b/sturm.c
+@@ -27,7 +27,6 @@
+ ***********************************************************************/
+
+ #include "ratpoints.h"
+-
+ /**************************************************************************
+ * Arguments of _ratpoints_compute_sturm() : (from the args argument) *
+ * *
+@@ -53,7 +52,7 @@
+ /* A helper function: evaluate the polynomial in cofs[] of given degree
+ at num/2^denexp and return the sign. */
+
+-static long eval_sign(ratpoints_args *args, mpz_t *cofs, long degree,
++static long eval_sign(const ratpoints_args *args, const mpz_t *cofs, long degree,
+ long num, long denexp)
+ {
+ long n, e, s;
+@@ -70,11 +69,80 @@ static long eval_sign(ratpoints_args *args, mpz_t *cofs, long degree,
+ return(s);
+ }
+
++static const long max = (long)(((unsigned long)(-1))>>1);
++static const long min = (long)(-(((unsigned long)(-1))>>1));
++ /* recursive helper function */
++static void iterate(long nl, long nr, long del, long der, long cleft, long cright,
++ long sl, long sr, long depth,
++ ratpoints_interval **iptr, const ratpoints_interval *ivlo,
++ const ratpoints_args *args, const long k, const long sturm_degs[],
++ const mpz_t sturm[][args->degree + 1])
++ { /* nl/2^del, nr/2^der : interval left/right endpoints,
++ cleft, cright: sign change counts at endpoints,
++ sl, sr: signs at endpoints,
++ depth: iteration depth */
++ long iter = args->sturm;
++ if(cleft == cright && sl < 0) { return; }
++ /* here we know the polynomial is negative on the interval */
++ if((cleft == cright && sl > 0) || depth >= iter)
++ /* we have to add/extend an interval if we either know that
++ the polynomial is positive on the interval (first condition)
++ or the maximal iteration depth has been reached (second condition) */
++ { double l = ((double)nl)/((double)(1<<del));
++ double u = ((double)nr)/((double)(1<<der));
++ if(*iptr == ivlo)
++ { (*iptr)->low = l; (*iptr)->up = u; (*iptr)++; }
++ else
++ { if(((*iptr)-1)->up == l) /* extend interval */
++ { ((*iptr)-1)->up = u; }
++ else /* new interval */
++ { (*iptr)->low = l; (*iptr)->up = u; (*iptr)++; }
++ }
++ return;
++ }
++ /* now we must split the interval and evaluate the sturm sequence
++ at the midpoint */
++ { long nm, dem, s0, s1, s2, s, cmid = 0, n;
++ if(nl == min)
++ { if(nr == max) { nm = 0; dem = 0; }
++ else { nm = (nr == 0) ? -1 : 2*nr; dem = 0; }
++ }
++ else
++ { if(nr == max) { nm = (nl == 0) ? 1 : 2*nl; dem = 0; }
++ else /* "normal" case */
++ { if(del == der) /* then both are zero */
++ { if(((nl+nr) & 1) == 0) { nm = (nl+nr)>>1; dem = 0; }
++ else { nm = nl+nr; dem = 1; }
++ }
++ else /* here one de* is greater */
++ { if(del > der) { nm = nl + (nr<<(del-der)); dem = del+1; }
++ else { nm = (nl<<(der-del)) + nr; dem = der+1; }
++ }
++ }
++ }
++ s0 = eval_sign(args, sturm[0], sturm_degs[0], nm, dem);
++ s1 = eval_sign(args, sturm[1], sturm_degs[1], nm, dem);
++ if(s0*s1 == -1) { cmid++; }
++ s = (s1 == 0) ? s0 : s1;
++ for(n = 2; n <= k; n++)
++ { s2 = eval_sign(args, sturm[n], sturm_degs[n], nm, dem);
++ if(s2 == -s) { cmid++; s = s2; }
++ else if(s2 != 0) { s = s2; }
++ }
++ /* now recurse */
++ iterate(nl, nm, del, dem, cleft, (s0==0) ? (cmid+1) : cmid,
++ sl, (s0==0) ? -s1 : s0, depth+1,
++ iptr, ivlo, args, k, sturm_degs, sturm);
++ iterate(nm, nr, dem, der, cmid, cright,
++ (s0==0) ? s1 : s0, sr, depth+1,
++ iptr, ivlo, args, k, sturm_degs, sturm);
++ }
++ } /* end iterate() */
++
+ long _ratpoints_compute_sturm(ratpoints_args *args)
+ {
+ mpz_t *cofs = args->cof;
+ long degree = args->degree;
+- long iter = args->sturm;
+ ratpoints_interval *ivlist = args->domain;
+ long num_iv = args->num_inter;
+ long n, m, k, new_num;
+@@ -165,75 +233,12 @@ long _ratpoints_compute_sturm(ratpoints_args *args)
+ /* recall: typedef struct {double low; double up;} ratpoints_interval; */
+ { ratpoints_interval ivlocal[1 + (degree>>1)];
+ ratpoints_interval *iptr = &ivlocal[0];
+- long max = (long)(((unsigned long)(-1))>>1);
+- long min = -max;
+ long num_intervals;
+ long slcf = mpz_cmp_si(cofs[degree], 0);
+
+- /* recursive helper function */
+- void iterate(long nl, long nr, long del, long der, long cleft, long cright,
+- long sl, long sr, long depth)
+- { /* nl/2^del, nr/2^der : interval left/right endpoints,
+- cleft, cright: sign change counts at endpoints,
+- sl, sr: signs at endpoints,
+- depth: iteration depth */
+- if(cleft == cright && sl < 0) { return; }
+- /* here we know the polynomial is negative on the interval */
+- if((cleft == cright && sl > 0) || depth >= iter)
+- /* we have to add/extend an interval if we either know that
+- the polynomial is positive on the interval (first condition)
+- or the maximal iteration depth has been reached (second condition) */
+- { double l = ((double)nl)/((double)(1<<del));
+- double u = ((double)nr)/((double)(1<<der));
+- if(iptr == &ivlocal[0])
+- { iptr->low = l; iptr->up = u; iptr++; }
+- else
+- { if((iptr-1)->up == l) /* extend interval */
+- { (iptr-1)->up = u; }
+- else /* new interval */
+- { iptr->low = l; iptr->up = u; iptr++; }
+- }
+- return;
+- }
+- /* now we must split the interval and evaluate the sturm sequence
+- at the midpoint */
+- { long nm, dem, s0, s1, s2, s, cmid = 0, n;
+- if(nl == min)
+- { if(nr == max) { nm = 0; dem = 0; }
+- else { nm = (nr == 0) ? -1 : 2*nr; dem = 0; }
+- }
+- else
+- { if(nr == max) { nm = (nl == 0) ? 1 : 2*nl; dem = 0; }
+- else /* "normal" case */
+- { if(del == der) /* then both are zero */
+- { if(((nl+nr) & 1) == 0) { nm = (nl+nr)>>1; dem = 0; }
+- else { nm = nl+nr; dem = 1; }
+- }
+- else /* here one de* is greater */
+- { if(del > der) { nm = nl + (nr<<(del-der)); dem = del+1; }
+- else { nm = (nl<<(der-del)) + nr; dem = der+1; }
+- }
+- }
+- }
+- s0 = eval_sign(args, sturm[0], sturm_degs[0], nm, dem);
+- s1 = eval_sign(args, sturm[1], sturm_degs[1], nm, dem);
+- if(s0*s1 == -1) { cmid++; }
+- s = (s1 == 0) ? s0 : s1;
+- for(n = 2; n <= k; n++)
+- { s2 = eval_sign(args, sturm[n], sturm_degs[n], nm, dem);
+- if(s2 == -s) { cmid++; s = s2; }
+- else if(s2 != 0) { s = s2; }
+- }
+- /* now recurse */
+- iterate(nl, nm, del, dem, cleft, (s0==0) ? (cmid+1) : cmid,
+- sl, (s0==0) ? -s1 : s0, depth+1);
+- iterate(nm, nr, dem, der, cmid, cright,
+- (s0==0) ? s1 : s0, sr, depth+1);
+- }
+- } /* end iterate() */
+-
+ iterate(min, max, 0, 0, count2, count1,
+- (degree & 1) ? -slcf : slcf, slcf, 0);
++ (degree & 1) ? -slcf : slcf, slcf, 0,
++ &iptr, &ivlocal[0], args, k, sturm_degs, sturm);
+ num_intervals = iptr - &ivlocal[0];
+ /* intersect with given intervals */
+ { ratpoints_interval local_copy[num_iv];