aboutsummaryrefslogtreecommitdiff
path: root/gnu/packages/cran.scm
diff options
context:
space:
mode:
authorRicardo Wurmus <ricardo.wurmus@mdc-berlin.de>2018-08-16 16:47:42 +0200
committerRicardo Wurmus <rekado@elephly.net>2018-08-16 17:04:13 +0200
commitcea4d360d4b21c1dc27c9ec676bc08830f600c61 (patch)
treeb75b9bd16bbb45260127e506f6bb74fc77e05ae7 /gnu/packages/cran.scm
parentfbdf05b1fcc12233c39db3f90a029df1ff47824d (diff)
downloadguix-cea4d360d4b21c1dc27c9ec676bc08830f600c61.tar
guix-cea4d360d4b21c1dc27c9ec676bc08830f600c61.tar.gz
gnu: Add r-rootsolve.
* gnu/packages/cran.scm (r-rootsolve): New variable.
Diffstat (limited to 'gnu/packages/cran.scm')
-rw-r--r--gnu/packages/cran.scm34
1 files changed, 34 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm
index 3665e3582e..411e5a9820 100644
--- a/gnu/packages/cran.scm
+++ b/gnu/packages/cran.scm
@@ -4813,3 +4813,37 @@ receiver operating characteristic (ROC curves). The area under the
curve (AUC) can be compared with statistical tests based on U-statistics or
bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves.")
(license license:gpl3+)))
+
+(define-public r-rootsolve
+ (package
+ (name "r-rootsolve")
+ (version "1.7")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (cran-uri "rootSolve" version))
+ (sha256
+ (base32
+ "08ic6ggcc5dw4nv9xsqkm3vnvswmxyhnqnv1rdjv1h2gy1ivpcq8"))))
+ (properties `((upstream-name . "rootSolve")))
+ (build-system r-build-system)
+ (native-inputs `(("gfortran" ,gfortran)))
+ (home-page "https://cran.r-project.org/web/packages/rootSolve/")
+ (synopsis "Tools for the analysis of ordinary differential equations")
+ (description
+ "This package provides routines to find the root of nonlinear functions,
+and to perform steady-state and equilibrium analysis of @dfn{ordinary
+differential equations} (ODE). It includes routines that:
+
+@enumerate
+@item generate gradient and jacobian matrices (full and banded),
+@item find roots of non-linear equations by the Newton-Raphson method,
+@item estimate steady-state conditions of a system of (differential) equations
+ in full, banded or sparse form, using the Newton-Raphson method, or by
+ dynamically running,
+@item solve the steady-state conditions for uni- and multicomponent 1-D, 2-D,
+ and 3-D partial differential equations, that have been converted to ordinary
+ differential equations by numerical differencing (using the method-of-lines
+ approach).
+@end enumerate\n")
+ (license license:gpl2+)))