aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorEfraim Flashner <efraim@flashner.co.il>2021-06-08 15:39:36 +0300
committerEfraim Flashner <efraim@flashner.co.il>2021-06-08 17:57:24 +0300
commitba637c5cb200f3c81f7685e08c5cc711d5b6eef3 (patch)
tree9a248abda59993e0af4a092a383c76ba77fd1b3d
parent8f7d9ce23ce9af209998ccc1d0b48c4c2e97b469 (diff)
downloadguix-ba637c5cb200f3c81f7685e08c5cc711d5b6eef3.tar
guix-ba637c5cb200f3c81f7685e08c5cc711d5b6eef3.tar.gz
gnu: Add julia-genericschur.
* gnu/packages/julia-xyz.scm (julia-genericschur): New variable.
-rw-r--r--gnu/packages/julia-xyz.scm37
1 files changed, 37 insertions, 0 deletions
diff --git a/gnu/packages/julia-xyz.scm b/gnu/packages/julia-xyz.scm
index c9fe8e131d..0471a8d8f9 100644
--- a/gnu/packages/julia-xyz.scm
+++ b/gnu/packages/julia-xyz.scm
@@ -928,6 +928,43 @@ differentiation (AD).")
"FuzzyCompletions provides fuzzy completions for a Julia runtime session.")
(license license:expat)))
+(define-public julia-genericschur
+ (package
+ (name "julia-genericschur")
+ (version "0.5.0")
+ (source
+ (origin
+ (method git-fetch)
+ (uri (git-reference
+ (url "https://github.com/RalphAS/GenericSchur.jl")
+ (commit (string-append "v" version))))
+ (file-name (git-file-name name version))
+ (sha256
+ (base32 "0kklc2niylvynhq0v49kdmy58m9jmr5jxjf287k1wr9r81fya3sz"))))
+ (build-system julia-build-system)
+ (arguments
+ `(#:phases
+ (modify-phases %standard-phases
+ (add-after 'unpack 'adjust-test-suite
+ (lambda _
+ (substitute* "test/complex.jl"
+ ;; expected Array{Int32,1}, got a value of type Array{Int64,1}
+ (("A = _example") "#A = _example")
+ (("schurtest\\(A,20\\)") ""))
+ (substitute* "test/runtests.jl"
+ ;; Test errors relating to liblapack.so
+ ((".*complex\\.jl.*") "")
+ ((".*real\\.jl.*") "")
+ ;; GenericSVD is deprecated upstream
+ ((".*gordschur\\.jl.*") "")))))))
+ (home-page "https://github.com/RalphAS/GenericSchur.jl")
+ (synopsis "Schur decomposition of matrices with generic element types")
+ (description "The Schur decomposition is the workhorse for eigensystem
+analysis of dense matrices. The diagonal eigen-decomposition of normal
+(especially Hermitian) matrices is an important special case, but for non-normal
+matrices the Schur form is often more useful.")
+ (license license:expat)))
+
(define-public julia-graphics
(package
(name "julia-graphics")