1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
/* Copyright 2003-2004 Roger Dingledine
* Copyright 2004-2007 Roger Dingledine, Nick Mathewson */
/* See LICENSE for licensing information */
/* $Id$ */
#ifndef __CONTAINER_H
#define __CONTAINER_H
#define CONTAINER_H_ID \
"$Id$"
#include "compat.h"
#include "util.h"
/** A resizeable list of pointers, with associated helpful functionality.
*
* The members of this struct are exposed only so that macros and inlines can
* use them; all access to smartlist internals should go throuch the functions
* and macros defined here.
**/
typedef struct smartlist_t {
/** <b>list</b> has enough capacity to store exactly <b>capacity</b> elements
* before it needs to be resized. Only the first <b>num_used</b> (\<=
* capacity) elements point to valid data.
*/
void **list;
int num_used;
int capacity;
} smartlist_t;
smartlist_t *smartlist_create(void);
void smartlist_free(smartlist_t *sl);
void smartlist_set_capacity(smartlist_t *sl, int n);
void smartlist_clear(smartlist_t *sl);
void smartlist_add(smartlist_t *sl, void *element);
void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2);
void smartlist_remove(smartlist_t *sl, const void *element);
void *smartlist_pop_last(smartlist_t *sl);
void smartlist_reverse(smartlist_t *sl);
void smartlist_string_remove(smartlist_t *sl, const char *element);
int smartlist_isin(const smartlist_t *sl, const void *element) ATTR_PURE;
int smartlist_string_isin(const smartlist_t *sl, const char *element)
ATTR_PURE;
int smartlist_string_pos(const smartlist_t *, const char *elt) ATTR_PURE;
int smartlist_string_isin_case(const smartlist_t *sl, const char *element)
ATTR_PURE;
int smartlist_string_num_isin(const smartlist_t *sl, int num) ATTR_PURE;
int smartlist_digest_isin(const smartlist_t *sl, const char *element)
ATTR_PURE;
int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2)
ATTR_PURE;
void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2);
void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2);
/* smartlist_choose() is defined in crypto.[ch] */
#ifdef DEBUG_SMARTLIST
/** Return the number of items in sl.
*/
static INLINE int smartlist_len(const smartlist_t *sl) ATTR_PURE;
static INLINE int smartlist_len(const smartlist_t *sl) {
tor_assert(sl);
return (sl)->num_used;
}
/** Return the <b>idx</b>th element of sl.
*/
static INLINE void *smartlist_get(const smartlist_t *sl, int idx) ATTR_PURE;
static INLINE void *smartlist_get(const smartlist_t *sl, int idx) {
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(sl->num_used > idx);
return sl->list[idx];
}
static INLINE void smartlist_set(smartlist_t *sl, int idx, void *val) {
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(sl->num_used > idx);
sl->list[idx] = val;
}
#else
#define smartlist_len(sl) ((sl)->num_used)
#define smartlist_get(sl, idx) ((sl)->list[idx])
#define smartlist_set(sl, idx, val) ((sl)->list[idx] = (val))
#endif
/** Exchange the elements at indices <b>idx1</b> and <b>idx2</b> of the
* smartlist <b>sl</b>. */
static INLINE void smartlist_swap(smartlist_t *sl, int idx1, int idx2)
{
if (idx1 != idx2) {
void *elt = smartlist_get(sl, idx1);
smartlist_set(sl, idx1, smartlist_get(sl, idx2));
smartlist_set(sl, idx2, elt);
}
}
void smartlist_del(smartlist_t *sl, int idx);
void smartlist_del_keeporder(smartlist_t *sl, int idx);
void smartlist_insert(smartlist_t *sl, int idx, void *val);
void smartlist_sort(smartlist_t *sl,
int (*compare)(const void **a, const void **b));
void smartlist_uniq(smartlist_t *sl,
int (*compare)(const void **a, const void **b),
void (*free_fn)(void *elt));
void smartlist_sort_strings(smartlist_t *sl);
void smartlist_sort_digests(smartlist_t *sl);
void smartlist_uniq_strings(smartlist_t *sl);
void smartlist_uniq_digests(smartlist_t *sl);
void *smartlist_bsearch(smartlist_t *sl, const void *key,
int (*compare)(const void *key, const void **member))
ATTR_PURE;
void smartlist_pqueue_add(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
void *item);
void *smartlist_pqueue_pop(smartlist_t *sl,
int (*compare)(const void *a, const void *b));
void smartlist_pqueue_assert_ok(smartlist_t *sl,
int (*compare)(const void *a, const void *b));
#define SPLIT_SKIP_SPACE 0x01
#define SPLIT_IGNORE_BLANK 0x02
int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
int flags, int max);
char *smartlist_join_strings(smartlist_t *sl, const char *join, int terminate,
size_t *len_out) ATTR_MALLOC;
char *smartlist_join_strings2(smartlist_t *sl, const char *join,
size_t join_len, int terminate, size_t *len_out)
ATTR_MALLOC;
/** Iterate over the items in a smartlist <b>sl</b>, in order. For each item,
* assign it to a new local variable of type <b>type</b> named <b>var</b>, and
* execute the statement <b>cmd</b>. Inside the loop, the loop index can
* be accessed as <b>var</b>_sl_idx and the length of the list can be accessed
* as <b>var</b>_sl_len.
*
* NOTE: Do not change the length of the list while the loop is in progress,
* unless you adjust the _sl_len variable correspondingly. See second example
* below.
*
* Example use:
* <pre>
* smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
* SMARTLIST_FOREACH(list, char *, cp,
* {
* printf("%d: %s\n", cp_sl_idx, cp);
* tor_free(cp);
* });
* smartlist_free(list);
* </pre>
*
* Example use (advanced):
* <pre>
* SMARTLIST_FOREACH(list, char *, cp,
* {
* if (!strcmp(cp, "junk")) {
* smartlist_del(list, cp_sl_idx);
* tor_free(cp);
* --cp_sl_len; // decrement length of list so we don't run off the end
* --cp_sl_idx; // decrement idx so we consider the item that moved here
* }
* });
* </pre>
*/
#define SMARTLIST_FOREACH(sl, type, var, cmd) \
STMT_BEGIN \
int var ## _sl_idx, var ## _sl_len=(sl)->num_used; \
type var; \
for (var ## _sl_idx = 0; var ## _sl_idx < var ## _sl_len; \
++var ## _sl_idx) { \
var = (sl)->list[var ## _sl_idx]; \
cmd; \
} STMT_END
/** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
* with the variable <b>var</b>, remove the current element in a way that
* won't confuse the loop. */
#define SMARTLIST_DEL_CURRENT(sl, var) \
STMT_BEGIN \
smartlist_del(sl, var ## _sl_idx); \
--var ## _sl_idx; \
--var ## _sl_len; \
STMT_END
#define DECLARE_MAP_FNS(maptype, keytype, prefix) \
typedef struct maptype maptype; \
typedef struct prefix##entry_t *prefix##iter_t; \
maptype* prefix##new(void); \
void* prefix##set(maptype *map, keytype key, void *val); \
void* prefix##get(const maptype *map, keytype key); \
void* prefix##remove(maptype *map, keytype key); \
void prefix##free(maptype *map, void (*free_val)(void*)); \
int prefix##isempty(const maptype *map); \
int prefix##size(const maptype *map); \
prefix##iter_t *prefix##iter_init(maptype *map); \
prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter); \
prefix##iter_t *prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter); \
void prefix##iter_get(prefix##iter_t *iter, keytype *keyp, void **valp); \
int prefix##iter_done(prefix##iter_t *iter); \
void prefix##assert_ok(const maptype *map)
/* Map from const char * to void *. Implemented with a hash table. */
DECLARE_MAP_FNS(strmap_t, const char *, strmap_);
DECLARE_MAP_FNS(digestmap_t, const char *, digestmap_);
#undef DECLARE_MAP_FNS
void* strmap_set_lc(strmap_t *map, const char *key, void *val);
void* strmap_get_lc(const strmap_t *map, const char *key);
void* strmap_remove_lc(strmap_t *map, const char *key);
#define DECLARE_TYPED_DIGESTMAP_FNS(prefix, maptype, valtype) \
typedef struct maptype maptype; \
typedef struct prefix##iter_t prefix##iter_t; \
static INLINE maptype* prefix##new(void) \
{ \
return (maptype*)digestmap_new(); \
} \
static INLINE valtype* prefix##get(maptype *map, const char *key) \
{ \
return (valtype*)digestmap_get((digestmap_t*)map, key); \
} \
static INLINE valtype* prefix##set(maptype *map, const char *key, \
valtype *val) \
{ \
return (valtype*)digestmap_set((digestmap_t*)map, key, val); \
} \
static INLINE valtype* prefix##remove(maptype *map, const char *key) \
{ \
return (valtype*)digestmap_remove((digestmap_t*)map, key); \
} \
static INLINE void prefix##free(maptype *map, void (*free_val)(void*)) \
{ \
digestmap_free((digestmap_t*)map, free_val); \
} \
static INLINE int prefix##isempty(maptype *map) \
{ \
return digestmap_isempty((digestmap_t*)map); \
} \
static INLINE int prefix##size(maptype *map) \
{ \
return digestmap_isempty((digestmap_t*)map); \
} \
static INLINE prefix##iter_t *prefix##iter_init(maptype *map) \
{ \
return (prefix##iter_t*) digestmap_iter_init((digestmap_t*)map); \
} \
static INLINE prefix##iter_t *prefix##iter_next(maptype *map, \
prefix##iter_t *iter) \
{ \
return (prefix##iter_t*) digestmap_iter_next( \
(digestmap_t*)map, (digestmap_iter_t*)iter); \
} \
static INLINE prefix##iter_t *prefix##iter_next_rmv(maptype *map, \
prefix##iter_t *iter) \
{ \
return (prefix##iter_t*) digestmap_iter_next_rmv( \
(digestmap_t*)map, (digestmap_iter_t*)iter); \
} \
static INLINE void prefix##iter_get(prefix##iter_t *iter, \
const char **keyp, \
valtype **valp) \
{ \
void *v; \
digestmap_iter_get((digestmap_iter_t*) iter, keyp, &v); \
*valp = v; \
} \
static INLINE int prefix##iter_done(prefix##iter_t *iter) \
{ \
return digestmap_iter_done((digestmap_iter_t*)iter); \
}
#if SIZEOF_INT == 4
#define BITARRAY_SHIFT 5
#define BITARRAY_MASK 31
#elif SIZEOF_INT == 8
#define BITARRAY_SHIFT 6
#define BITARRAY_MASK 63
#else
#error "int is neither 4 nor 8 bites. I can't deal with that."
#endif
typedef unsigned int bitarray_t;
/** Create a new bit array that can hold <b>n_bits</b> bits. */
static INLINE bitarray_t *
bitarray_init_zero(int n_bits)
{
size_t sz = (n_bits+BITARRAY_MASK) & BITARRAY_MASK;
return tor_malloc_zero(sz*sizeof(unsigned int));
}
/** Free the bit array <b>ba</b>. */
static INLINE void
bitarray_free(bitarray_t *ba)
{
tor_free(ba);
}
/** Set the <b>bit</b>th bit in <b>b</b> to 1. */
static INLINE void
bitarray_set(bitarray_t *b, int bit)
{
b[bit >> BITARRAY_SHIFT] |= (1u << (bit & BITARRAY_MASK));
}
/** Set the <b>bit</b>th bit in <b>b</b> to 0. */
static INLINE void
bitarray_clear(bitarray_t *b, int bit)
{
b[bit >> BITARRAY_SHIFT] &= ~ (1u << (bit & BITARRAY_MASK));
}
/** Return true iff <b>bit</b>th bit in <b>b</b> is nonzero. NOTE: does
* not necessarily return 1 on true. */
static INLINE unsigned int
bitarray_is_set(bitarray_t *b, int bit)
{
return b[bit >> BITARRAY_SHIFT] & (1u << (bit & BITARRAY_MASK));
}
#endif
|