1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
|
/* Copyright 2003-2004 Roger Dingledine; Copyright 2004 Nick Mathewson */
/* See LICENSE for licensing information */
/* $Id$ */
#include "compat.h"
#include "util.h"
#include "log.h"
#include "../or/tree.h"
#include "container.h"
#ifdef HAVE_CTYPE_H
#include <ctype.h>
#endif
#include <stdlib.h>
#include <string.h>
#include <assert.h>
/* =====
* smartlist_t: a simple resizeable array abstraction.
* ===== */
/* All newly allocated smartlists have this capacity.
*/
#define SMARTLIST_DEFAULT_CAPACITY 32
struct smartlist_t {
/** <b>list</b> has enough capacity to store exactly <b>capacity</b> elements
* before it needs to be resized. Only the first <b>num_used</b> (\<=
* capacity) elements point to valid data.
*/
void **list;
int num_used;
int capacity;
};
/** Allocate and return an empty smartlist.
*/
smartlist_t *smartlist_create() {
smartlist_t *sl = tor_malloc(sizeof(smartlist_t));
sl->num_used = 0;
sl->capacity = SMARTLIST_DEFAULT_CAPACITY;
sl->list = tor_malloc(sizeof(void *) * sl->capacity);
return sl;
}
/** Deallocate a smartlist. Does not release storage associated with the
* list's elements.
*/
void smartlist_free(smartlist_t *sl) {
free(sl->list);
free(sl);
}
/** Change the capacity of the smartlist to <b>n</b>, so that we can grow
* the list up to <b>n</b> elements with no further reallocation or wasted
* space. If <b>n</b> is less than or equal to the number of elements
* currently in the list, reduce the list's capacity as much as
* possible without losing elements.
*/
void smartlist_set_capacity(smartlist_t *sl, int n) {
if (n < sl->num_used)
n = sl->num_used;
if (sl->capacity != n) {
sl->capacity = n;
sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity);
}
}
/** Remove all elements from the list.
*/
void smartlist_clear(smartlist_t *sl) {
sl->num_used = 0;
}
/** Set the list's new length to <b>len</b> (which must be \<= the list's
* current size). Remove the last smartlist_len(sl)-len elements from the
* list.
*/
void smartlist_truncate(smartlist_t *sl, int len)
{
tor_assert(len <= sl->num_used);
sl->num_used = len;
}
/** Append element to the end of the list. */
void smartlist_add(smartlist_t *sl, void *element) {
if (sl->num_used >= sl->capacity) {
sl->capacity *= 2;
sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity);
}
sl->list[sl->num_used++] = element;
}
/** Append each element from S2 to the end of S1. */
void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2)
{
SMARTLIST_FOREACH(s2, void *, element, smartlist_add(sl, element));
}
/** Remove all elements E from sl such that E==element. Does not preserve
* the order of s1.
*/
void smartlist_remove(smartlist_t *sl, void *element) {
int i;
if(element == NULL)
return;
for(i=0; i < sl->num_used; i++)
if(sl->list[i] == element) {
sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
i--; /* so we process the new i'th element */
}
}
/** Return true iff some element E of sl has E==element.
*/
int smartlist_isin(const smartlist_t *sl, void *element) {
int i;
for(i=0; i < sl->num_used; i++)
if(sl->list[i] == element)
return 1;
return 0;
}
int smartlist_string_isin(const smartlist_t *sl, const char *element) {
int i;
for(i=0; i < sl->num_used; i++)
if(strcmp((const char*)sl->list[i],element)==0)
return 1;
return 0;
}
/** Return true iff some element E of sl2 has smartlist_isin(sl1,E).
*/
int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2) {
int i;
for(i=0; i < sl2->num_used; i++)
if(smartlist_isin(sl1, sl2->list[i]))
return 1;
return 0;
}
/** Remove every element E of sl1 such that !smartlist_isin(sl2,E).
* Does not preserve the order of sl1.
*/
void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2) {
int i;
for(i=0; i < sl1->num_used; i++)
if(!smartlist_isin(sl2, sl1->list[i])) {
sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */
i--; /* so we process the new i'th element */
}
}
/** Remove every element E of sl1 such that smartlist_isin(sl2,E).
* Does not preserve the order of sl1.
*/
void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2) {
int i;
for(i=0; i < sl2->num_used; i++)
smartlist_remove(sl1, sl2->list[i]);
}
/** Return the <b>idx</b>th element of sl.
*/
void *smartlist_get(const smartlist_t *sl, int idx)
{
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx < sl->num_used);
return sl->list[idx];
}
/** Change the value of the <b>idx</b>th element of sl to <b>val</b>; return the old
* value of the <b>idx</b>th element.
*/
void *smartlist_set(smartlist_t *sl, int idx, void *val)
{
void *old;
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx < sl->num_used);
old = sl->list[idx];
sl->list[idx] = val;
return old;
}
/** Remove the <b>idx</b>th element of sl; if idx is not the last
* element, swap the last element of sl into the <b>idx</b>th space.
* Return the old value of the <b>idx</b>th element.
*/
void *smartlist_del(smartlist_t *sl, int idx)
{
void *old;
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx < sl->num_used);
old = sl->list[idx];
sl->list[idx] = sl->list[--sl->num_used];
return old;
}
/** Remove the <b>idx</b>th element of sl; if idx is not the last element,
* moving all subsequent elements back one space. Return the old value
* of the <b>idx</b>th element.
*/
void *smartlist_del_keeporder(smartlist_t *sl, int idx)
{
void *old;
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx < sl->num_used);
old = sl->list[idx];
--sl->num_used;
if (idx < sl->num_used)
memmove(sl->list+idx, sl->list+idx+1, sizeof(void*)*(sl->num_used-idx));
return old;
}
/** Return the number of items in sl.
*/
int smartlist_len(const smartlist_t *sl)
{
return sl->num_used;
}
/** Insert the value <b>val</b> as the new <b>idx</b>th element of
* <b>sl</b>, moving all items previously at <b>idx</b> or later
* forward one space.
*/
void smartlist_insert(smartlist_t *sl, int idx, void *val)
{
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx <= sl->num_used);
if (idx == sl->num_used) {
smartlist_add(sl, val);
} else {
/* Ensure sufficient capacity */
if (sl->num_used >= sl->capacity) {
sl->capacity *= 2;
sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity);
}
/* Move other elements away */
if (idx < sl->num_used)
memmove(sl->list + idx + 1, sl->list + idx,
sizeof(void*)*(sl->num_used-idx));
sl->num_used++;
sl->list[idx] = val;
}
}
/**
* Split a string <b>str</b> along all occurences of <b>sep</b>,
* adding the split strings, in order, to <b>sl</b>. If
* <b>flags</b>&SPLIT_SKIP_SPACE is true, remove initial and
* trailing space from each entry. If
* <b>flags</b>&SPLIT_IGNORE_BLANK is true, remove any entries of
* length 0. If max>0, divide the string into no more than <b>max</b>
* pieces.
*/
int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
int flags, int max)
{
const char *cp, *end, *next;
int n = 0;
tor_assert(sl);
tor_assert(str);
tor_assert(sep);
cp = str;
while (1) {
if (flags&SPLIT_SKIP_SPACE) {
while (isspace((int)*cp)) ++cp;
}
if (max>0 && n == max-1) {
end = strchr(cp,'\0');
} else {
end = strstr(cp,sep);
if (!end)
end = strchr(cp,'\0');
}
if (!*end) {
next = NULL;
} else {
next = end+strlen(sep);
}
if (flags&SPLIT_SKIP_SPACE) {
while (end > cp && isspace((int)*(end-1)))
--end;
}
if (end != cp || !(flags&SPLIT_IGNORE_BLANK)) {
smartlist_add(sl, tor_strndup(cp, end-cp));
++n;
}
if (!next)
break;
cp = next;
}
return n;
}
/** Allocate and return a new string containing the concatenation of
* the elements of <b>sl</b>, in order, separated by <b>join</b>. If
* <b>terminate</b> is true, also terminate the string with <b>join</b>.
* If <b>len_out</b> is not NULL, set <b>len_out</b> to the length of
* the returned string. Requires that every element of <b>sl</b> is
* NUL-terminated string.
*/
char *smartlist_join_strings(smartlist_t *sl, const char *join,
int terminate, size_t *len_out)
{
return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out);
}
/** As smartlist_join_strings2, but instead of separating/terminated with a
* NUL-terminated string <b>join</b>, uses the <b>join_len</b>-byte sequence
* at <b>join</b>. (Useful for generating a sequenct of NUL-terminated
* strings.)
*/
char *smartlist_join_strings2(smartlist_t *sl, const char *join,
size_t join_len, int terminate, size_t *len_out)
{
int i;
size_t n = 0;
char *r = NULL, *dst, *src;
tor_assert(sl);
tor_assert(join);
join_len = strlen(join);
for (i = 0; i < sl->num_used; ++i) {
n += strlen(sl->list[i]);
n += join_len;
}
if (!terminate) n -= join_len;
dst = r = tor_malloc(n+1);
for (i = 0; i < sl->num_used; ) {
for (src = sl->list[i]; *src; )
*dst++ = *src++;
if (++i < sl->num_used || terminate) {
memcpy(dst, join, join_len);
dst += join_len;
}
}
*dst = '\0';
if (len_out)
*len_out = dst-r;
return r;
}
/* Splay-tree implementation of string-to-void* map
*/
struct strmap_entry_t {
SPLAY_ENTRY(strmap_entry_t) node;
char *key;
void *val;
};
struct strmap_t {
SPLAY_HEAD(strmap_tree, strmap_entry_t) head;
};
static int compare_strmap_entries(struct strmap_entry_t *a,
struct strmap_entry_t *b)
{
return strcmp(a->key, b->key);
}
SPLAY_PROTOTYPE(strmap_tree, strmap_entry_t, node, compare_strmap_entries);
SPLAY_GENERATE(strmap_tree, strmap_entry_t, node, compare_strmap_entries);
/** Create a new empty map from strings to void*'s.
*/
strmap_t* strmap_new(void)
{
strmap_t *result;
result = tor_malloc(sizeof(strmap_t));
SPLAY_INIT(&result->head);
return result;
}
/** Set the current value for <b>key</b> to <b>val</b>. Returns the previous
* value for <b>key</b> if one was set, or NULL if one was not.
*
* This function makes a copy of <b>key</b> if necessary, but not of <b>val</b>.
*/
void* strmap_set(strmap_t *map, const char *key, void *val)
{
strmap_entry_t *resolve;
strmap_entry_t search;
void *oldval;
tor_assert(map);
tor_assert(key);
tor_assert(val);
search.key = (char*)key;
resolve = SPLAY_FIND(strmap_tree, &map->head, &search);
if (resolve) {
oldval = resolve->val;
resolve->val = val;
return oldval;
} else {
resolve = tor_malloc_zero(sizeof(strmap_entry_t));
resolve->key = tor_strdup(key);
resolve->val = val;
SPLAY_INSERT(strmap_tree, &map->head, resolve);
return NULL;
}
}
/** Return the current value associated with <b>key</b>, or NULL if no
* value is set.
*/
void* strmap_get(strmap_t *map, const char *key)
{
strmap_entry_t *resolve;
strmap_entry_t search;
tor_assert(map);
tor_assert(key);
search.key = (char*)key;
resolve = SPLAY_FIND(strmap_tree, &map->head, &search);
if (resolve) {
return resolve->val;
} else {
return NULL;
}
}
/** Remove the value currently associated with <b>key</b> from the map.
* Return the value if one was set, or NULL if there was no entry for
* <b>key</b>.
*
* Note: you must free any storage associated with the returned value.
*/
void* strmap_remove(strmap_t *map, const char *key)
{
strmap_entry_t *resolve;
strmap_entry_t search;
void *oldval;
tor_assert(map);
tor_assert(key);
search.key = (char*)key;
resolve = SPLAY_FIND(strmap_tree, &map->head, &search);
if (resolve) {
oldval = resolve->val;
SPLAY_REMOVE(strmap_tree, &map->head, resolve);
tor_free(resolve->key);
tor_free(resolve);
return oldval;
} else {
return NULL;
}
}
/** Same as strmap_set, but first converts <b>key</b> to lowercase. */
void* strmap_set_lc(strmap_t *map, const char *key, void *val)
{
/* We could be a little faster by using strcasecmp instead, and a separate
* type, but I don't think it matters. */
void *v;
char *lc_key = tor_strdup(key);
tor_strlower(lc_key);
v = strmap_set(map,lc_key,val);
tor_free(lc_key);
return v;
}
/** Same as strmap_get, but first converts <b>key</b> to lowercase. */
void* strmap_get_lc(strmap_t *map, const char *key)
{
void *v;
char *lc_key = tor_strdup(key);
tor_strlower(lc_key);
v = strmap_get(map,lc_key);
tor_free(lc_key);
return v;
}
/** Same as strmap_remove, but first converts <b>key</b> to lowercase */
void* strmap_remove_lc(strmap_t *map, const char *key)
{
void *v;
char *lc_key = tor_strdup(key);
tor_strlower(lc_key);
v = strmap_remove(map,lc_key);
tor_free(lc_key);
return v;
}
/** Invoke fn() on every entry of the map, in order. For every entry,
* fn() is invoked with that entry's key, that entry's value, and the
* value of <b>data</b> supplied to strmap_foreach. fn() must return a new
* (possibly unmodified) value for each entry: if fn() returns NULL, the
* entry is removed.
*
* Example:
* \code
* static void* upcase_and_remove_empty_vals(const char *key, void *val,
* void* data) {
* char *cp = (char*)val;
* if (!*cp) { // val is an empty string.
* free(val);
* return NULL;
* } else {
* for (; *cp; cp++)
* *cp = toupper(*cp);
* }
* return val;
* }
* }
*
* ...
*
* strmap_foreach(map, upcase_and_remove_empty_vals, NULL);
* \endcode
*/
void strmap_foreach(strmap_t *map,
void* (*fn)(const char *key, void *val, void *data),
void *data)
{
strmap_entry_t *ptr, *next;
tor_assert(map);
tor_assert(fn);
for (ptr = SPLAY_MIN(strmap_tree, &map->head); ptr != NULL; ptr = next) {
/* This remove-in-place usage is specifically blessed in tree(3). */
next = SPLAY_NEXT(strmap_tree, &map->head, ptr);
ptr->val = fn(ptr->key, ptr->val, data);
if (!ptr->val) {
SPLAY_REMOVE(strmap_tree, &map->head, ptr);
tor_free(ptr->key);
tor_free(ptr);
}
}
}
/** return an <b>iterator</b> pointer to the front of a map.
*
* Iterator example:
*
* \code
* // uppercase values in "map", removing empty values.
*
* strmap_iter_t *iter;
* const char *key;
* void *val;
* char *cp;
*
* for (iter = strmap_iter_init(map); !strmap_iter_done(iter); ) {
* strmap_iter_get(iter, &key, &val);
* cp = (char*)val;
* if (!*cp) {
* iter = strmap_iter_next_rmv(iter);
* free(val);
* } else {
* for(;*cp;cp++) *cp = toupper(*cp);
* iter = strmap_iter_next(iter);
* }
* }
* \endcode
*
*/
strmap_iter_t *strmap_iter_init(strmap_t *map)
{
tor_assert(map);
return SPLAY_MIN(strmap_tree, &map->head);
}
/** Advance the iterator <b>iter</b> for map a single step to the next entry.
*/
strmap_iter_t *strmap_iter_next(strmap_t *map, strmap_iter_t *iter)
{
tor_assert(map);
tor_assert(iter);
return SPLAY_NEXT(strmap_tree, &map->head, iter);
}
/** Advance the iterator <b>iter</b> a single step to the next entry, removing
* the current entry.
*/
strmap_iter_t *strmap_iter_next_rmv(strmap_t *map, strmap_iter_t *iter)
{
strmap_iter_t *next;
tor_assert(map);
tor_assert(iter);
next = SPLAY_NEXT(strmap_tree, &map->head, iter);
SPLAY_REMOVE(strmap_tree, &map->head, iter);
tor_free(iter->key);
tor_free(iter);
return next;
}
/** Set *keyp and *valp to the current entry pointed to by iter.
*/
void strmap_iter_get(strmap_iter_t *iter, const char **keyp, void **valp)
{
tor_assert(iter);
tor_assert(keyp);
tor_assert(valp);
*keyp = iter->key;
*valp = iter->val;
}
/** Return true iff iter has advanced past the last entry of map.
*/
int strmap_iter_done(strmap_iter_t *iter)
{
return iter == NULL;
}
/** Remove all entries from <b>map</b>, and deallocate storage for those entries.
* If free_val is provided, it is invoked on every value in <b>map</b>.
*/
void strmap_free(strmap_t *map, void (*free_val)(void*))
{
strmap_entry_t *ent, *next;
for (ent = SPLAY_MIN(strmap_tree, &map->head); ent != NULL; ent = next) {
next = SPLAY_NEXT(strmap_tree, &map->head, ent);
SPLAY_REMOVE(strmap_tree, &map->head, ent);
tor_free(ent->key);
if (free_val)
tor_free(ent->val);
}
tor_assert(SPLAY_EMPTY(&map->head));
tor_free(map);
}
int strmap_isempty(strmap_t *map)
{
return SPLAY_EMPTY(&map->head);
}
/*
Local Variables:
mode:c
indent-tabs-mode:nil
c-basic-offset:2
End:
*/
|