/* Copyright 2004-2007 Roger Dingledine, Nick Mathewson. */
/* See LICENSE for licensing information */
/* $Id$ */
const char hibernate_c_id[] =
"$Id$";
/**
* \file hibernate.c
* \brief Functions to close listeners, stop allowing new circuits,
* etc in preparation for closing down or going dormant; and to track
* bandwidth and time intervals to know when to hibernate and when to
* stop hibernating.
**/
/*
hibernating, phase 1:
- send destroy in response to create cells
- send end (policy failed) in response to begin cells
- close an OR conn when it has no circuits
hibernating, phase 2:
(entered when bandwidth hard limit reached)
- close all OR/AP/exit conns)
*/
#include "or.h"
/** Possible values of hibernate_state */
typedef enum {
/** We are running normally. */
HIBERNATE_STATE_LIVE=1,
/** We're trying to shut down cleanly, and we'll kill all active connections
* at shutdown_time. */
HIBERNATE_STATE_EXITING=2,
/** We're running low on allocated bandwidth for this period, so we won't
* accept any new connections. */
HIBERNATE_STATE_LOWBANDWIDTH=3,
/** We are hibernating, and we won't wake up till there's more bandwidth to
* use. */
HIBERNATE_STATE_DORMANT=4
} hibernate_state_t;
extern long stats_n_seconds_working; /* published uptime */
/** Are we currently awake, asleep, running out of bandwidth, or shutting
* down? */
static hibernate_state_t hibernate_state = HIBERNATE_STATE_LIVE;
/** If are hibernating, when do we plan to wake up? Set to 0 if we
* aren't hibernating. */
static time_t hibernate_end_time = 0;
/** If we are shutting down, when do we plan finally exit? Set to 0 if
* we aren't shutting down. */
static time_t shutdown_time = 0;
/** Possible accounting periods. */
typedef enum {
UNIT_MONTH=1, UNIT_WEEK=2, UNIT_DAY=3,
} time_unit_t;
/* Fields for accounting logic. Accounting overview:
*
* Accounting is designed to ensure that no more than N bytes are sent in
* either direction over a given interval (currently, one month, one week, or
* one day) We could
* try to do this by choking our bandwidth to a trickle, but that
* would make our streams useless. Instead, we estimate what our
* bandwidth usage will be, and guess how long we'll be able to
* provide that much bandwidth before hitting our limit. We then
* choose a random time within the accounting interval to come up (so
* that we don't get 50 Tors running on the 1st of the month and none
* on the 30th).
*
* Each interval runs as follows:
*
* 1. We guess our bandwidth usage, based on how much we used
* last time. We choose a "wakeup time" within the interval to come up.
* 2. Until the chosen wakeup time, we hibernate.
* 3. We come up at the wakeup time, and provide bandwidth until we are
* "very close" to running out.
* 4. Then we go into low-bandwidth mode, and stop accepting new
* connections, but provide bandwidth until we run out.
* 5. Then we hibernate until the end of the interval.
*
* If the interval ends before we run out of bandwidth, we go back to
* step one.
*/
/** How many bytes have we read in this accounting interval? */
static uint64_t n_bytes_read_in_interval = 0;
/** How many bytes have we written in this accounting interval? */
static uint64_t n_bytes_written_in_interval = 0;
/** How many seconds have we been running this interval? */
static uint32_t n_seconds_active_in_interval = 0;
/** When did this accounting interval start? */
static time_t interval_start_time = 0;
/** When will this accounting interval end? */
static time_t interval_end_time = 0;
/** How far into the accounting interval should we hibernate? */
static time_t interval_wakeup_time = 0;
/** How much bandwidth do we 'expect' to use per minute? (0 if we have no
* info from the last period.) */
static uint64_t expected_bandwidth_usage = 0;
/** What unit are we using for our accounting? */
static time_unit_t cfg_unit = UNIT_MONTH;
/** How many days,hours,minutes into each unit does our accounting interval
* start? */
static int cfg_start_day = 0;
static int cfg_start_hour = 0;
static int cfg_start_min = 0;
static void reset_accounting(time_t now);
static int read_bandwidth_usage(void);
static time_t start_of_accounting_period_after(time_t now);
static time_t start_of_accounting_period_containing(time_t now);
static void accounting_set_wakeup_time(void);
/* ************
* Functions for bandwidth accounting.
* ************/
/** Configure accounting start/end time settings based on
* options->AccountingStart. Return 0 on success, -1 on failure. If
* validate_only is true, do not change the current settings. */
int
accounting_parse_options(or_options_t *options, int validate_only)
{
time_unit_t unit;
int ok, idx;
long d,h,m;
smartlist_t *items;
const char *v = options->AccountingStart;
const char *s;
char *cp;
if (!v) {
if (!validate_only) {
cfg_unit = UNIT_MONTH;
cfg_start_day = 1;
cfg_start_hour = 0;
cfg_start_min = 0;
}
return 0;
}
items = smartlist_create();
smartlist_split_string(items, v, NULL,
SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK,0);
if (smartlist_len(items)<2) {
log_warn(LD_CONFIG, "Too few arguments to AccountingStart");
goto err;
}
s = smartlist_get(items,0);
if (0==strcasecmp(s, "month")) {
unit = UNIT_MONTH;
} else if (0==strcasecmp(s, "week")) {
unit = UNIT_WEEK;
} else if (0==strcasecmp(s, "day")) {
unit = UNIT_DAY;
} else {
log_warn(LD_CONFIG,
"Unrecognized accounting unit '%s': only 'month', 'week',"
" and 'day' are supported.", s);
goto err;
}
switch (unit) {
case UNIT_WEEK:
d = tor_parse_long(smartlist_get(items,1), 10, 1, 7, &ok, NULL);
if (!ok) {
log_warn(LD_CONFIG, "Weekly accounting must begin on a day between "
"1 (Monday) and 7 (Sunday)");
goto err;
}
break;
case UNIT_MONTH:
d = tor_parse_long(smartlist_get(items,1), 10, 1, 28, &ok, NULL);
if (!ok) {
log_warn(LD_CONFIG, "Monthly accounting must begin on a day between "
"1 and 28");
goto err;
}
break;
case UNIT_DAY:
d = 0;
break;
default:
tor_assert(0);
}
idx = unit==UNIT_DAY?1:2;
if (smartlist_len(items) != (idx+1)) {
log_warn(LD_CONFIG,"Accounting unit '%s' requires %d argument%s.",
s, idx, (idx>1)?"s":"");
goto err;
}
s = smartlist_get(items, idx);
h = tor_parse_long(s, 10, 0, 23, &ok, &cp);
if (!ok) {
log_warn(LD_CONFIG,"Accounting start time not parseable: bad hour.");
goto err;
}
if (!cp || *cp!=':') {
log_warn(LD_CONFIG,
"Accounting start time not parseable: not in HH:MM format");
goto err;
}
m = tor_parse_long(cp+1, 10, 0, 59, &ok, &cp);
if (!ok) {
log_warn(LD_CONFIG, "Accounting start time not parseable: bad minute");
goto err;
}
if (!cp || *cp!='\0') {
log_warn(LD_CONFIG,
"Accounting start time not parseable: not in HH:MM format");
goto err;
}
if (!validate_only) {
cfg_unit = unit;
cfg_start_day = (int)d;
cfg_start_hour = (int)h;
cfg_start_min = (int)m;
}
SMARTLIST_FOREACH(items, char *, s, tor_free(s));
smartlist_free(items);
return 0;
err:
SMARTLIST_FOREACH(items, char *, s, tor_free(s));
smartlist_free(items);
return -1;
}
/** If we want to manage the accounting system and potentially
* hibernate, return 1, else return 0.
*/
int
accounting_is_enabled(or_options_t *options)
{
if (options->AccountingMax)
return 1;
return 0;
}
/** Called from main.c to tell us that seconds seconds have
* passed, n_read bytes have been read, and n_written
* bytes have been written. */
void
accounting_add_bytes(size_t n_read, size_t n_written, int seconds)
{
n_bytes_read_in_interval += n_read;
n_bytes_written_in_interval += n_written;
/* If we haven't been called in 10 seconds, we're probably jumping
* around in time. */
n_seconds_active_in_interval += (seconds < 10) ? seconds : 0;
}
/** If get_end, return the end of the accounting period that contains
* the time now. Else, return the start of the accounting
* period that contains the time now */
static time_t
edge_of_accounting_period_containing(time_t now, int get_end)
{
int before;
struct tm tm;
tor_localtime_r(&now, &tm);
/* Set 'before' to true iff the current time is before the hh:mm
* changeover time for today. */
before = tm.tm_hour < cfg_start_hour ||
(tm.tm_hour == cfg_start_hour && tm.tm_min < cfg_start_min);
/* Dispatch by unit. First, find the start day of the given period;
* then, if get_end is true, increment to the end day. */
switch (cfg_unit)
{
case UNIT_MONTH: {
/* If this is before the Nth, we want the Nth of last month. */
if (tm.tm_mday < cfg_start_day ||
(tm.tm_mday < cfg_start_day && before)) {
--tm.tm_mon;
}
/* Otherwise, the month is correct. */
tm.tm_mday = cfg_start_day;
if (get_end)
++tm.tm_mon;
break;
}
case UNIT_WEEK: {
/* What is the 'target' day of the week in struct tm format? (We
say Sunday==7; struct tm says Sunday==0.) */
int wday = cfg_start_day % 7;
/* How many days do we subtract from today to get to the right day? */
int delta = (7+tm.tm_wday-wday)%7;
/* If we are on the right day, but the changeover hasn't happened yet,
* then subtract a whole week. */
if (delta == 0 && before)
delta = 7;
tm.tm_mday -= delta;
if (get_end)
tm.tm_mday += 7;
break;
}
case UNIT_DAY:
if (before)
--tm.tm_mday;
if (get_end)
++tm.tm_mday;
break;
default:
tor_assert(0);
}
tm.tm_hour = cfg_start_hour;
tm.tm_min = cfg_start_min;
tm.tm_sec = 0;
tm.tm_isdst = -1; /* Autodetect DST */
return mktime(&tm);
}
/** Return the start of the accounting period containing the time
* now. */
static time_t
start_of_accounting_period_containing(time_t now)
{
return edge_of_accounting_period_containing(now, 0);
}
/** Return the start of the accounting period that comes after the one
* containing the time now. */
static time_t
start_of_accounting_period_after(time_t now)
{
return edge_of_accounting_period_containing(now, 1);
}
/** Initialize the accounting subsystem. */
void
configure_accounting(time_t now)
{
/* Try to remember our recorded usage. */
if (!interval_start_time)
read_bandwidth_usage(); /* If we fail, we'll leave values at zero, and
* reset below.*/
if (!interval_start_time ||
start_of_accounting_period_after(interval_start_time) <= now) {
/* We didn't have recorded usage, or we don't have recorded usage
* for this interval. Start a new interval. */
log_info(LD_ACCT, "Starting new accounting interval.");
reset_accounting(now);
} else if (interval_start_time ==
start_of_accounting_period_containing(interval_start_time)) {
log_info(LD_ACCT, "Continuing accounting interval.");
/* We are in the interval we thought we were in. Do nothing.*/
interval_end_time = start_of_accounting_period_after(interval_start_time);
} else {
log_warn(LD_ACCT,
"Mismatched accounting interval; starting a fresh one.");
reset_accounting(now);
}
accounting_set_wakeup_time();
}
/** Set expected_bandwidth_usage based on how much we sent/received
* per minute last interval (if we were up for at least 30 minutes),
* or based on our declared bandwidth otherwise. */
static void
update_expected_bandwidth(void)
{
uint64_t used, expected;
uint64_t max_configured = (get_options()->BandwidthRate * 60);
if (n_seconds_active_in_interval < 1800) {
/* If we haven't gotten enough data last interval, set 'expected'
* to 0. This will set our wakeup to the start of the interval.
* Next interval, we'll choose our starting time based on how much
* we sent this interval.
*/
expected = 0;
} else {
used = n_bytes_written_in_interval < n_bytes_read_in_interval ?
n_bytes_read_in_interval : n_bytes_written_in_interval;
expected = used / (n_seconds_active_in_interval / 60);
if (expected > max_configured)
expected = max_configured;
}
expected_bandwidth_usage = expected;
}
/** Called at the start of a new accounting interval: reset our
* expected bandwidth usage based on what happened last time, set up
* the start and end of the interval, and clear byte/time totals.
*/
static void
reset_accounting(time_t now)
{
log_info(LD_ACCT, "Starting new accounting interval.");
update_expected_bandwidth();
interval_start_time = start_of_accounting_period_containing(now);
interval_end_time = start_of_accounting_period_after(interval_start_time);
n_bytes_read_in_interval = 0;
n_bytes_written_in_interval = 0;
n_seconds_active_in_interval = 0;
}
/** Return true iff we should save our bandwidth usage to disk. */
static INLINE int
time_to_record_bandwidth_usage(time_t now)
{
/* Note every 600 sec */
#define NOTE_INTERVAL (600)
/* Or every 20 megabytes */
#define NOTE_BYTES 20*(1024*1024)
static uint64_t last_read_bytes_noted = 0;
static uint64_t last_written_bytes_noted = 0;
static time_t last_time_noted = 0;
if (last_time_noted + NOTE_INTERVAL <= now ||
last_read_bytes_noted + NOTE_BYTES <= n_bytes_read_in_interval ||
last_written_bytes_noted + NOTE_BYTES <= n_bytes_written_in_interval ||
(interval_end_time && interval_end_time <= now)) {
last_time_noted = now;
last_read_bytes_noted = n_bytes_read_in_interval;
last_written_bytes_noted = n_bytes_written_in_interval;
return 1;
}
return 0;
}
/** Invoked once per second. Checks whether it is time to hibernate,
* record bandwidth used, etc. */
void
accounting_run_housekeeping(time_t now)
{
if (now >= interval_end_time) {
configure_accounting(now);
}
if (time_to_record_bandwidth_usage(now)) {
if (accounting_record_bandwidth_usage(now, get_or_state())) {
log_warn(LD_FS, "Couldn't record bandwidth usage to disk.");
}
}
}
/** When we have no idea how fast we are, how long do we assume it will take
* us to exhaust our bandwidth? */
#define GUESS_TIME_TO_USE_BANDWIDTH (24*60*60)
/** Based on our interval and our estimated bandwidth, choose a
* deterministic (but random-ish) time to wake up. */
static void
accounting_set_wakeup_time(void)
{
char buf[ISO_TIME_LEN+1];
char digest[DIGEST_LEN];
crypto_digest_env_t *d_env;
int time_in_interval;
uint64_t time_to_exhaust_bw;
int time_to_consider;
if (! identity_key_is_set()) {
if (init_keys() < 0) {
log_err(LD_BUG, "Error initializing keys");
tor_assert(0);
}
}
format_iso_time(buf, interval_start_time);
crypto_pk_get_digest(get_identity_key(), digest);
d_env = crypto_new_digest_env();
crypto_digest_add_bytes(d_env, buf, ISO_TIME_LEN);
crypto_digest_add_bytes(d_env, digest, DIGEST_LEN);
crypto_digest_get_digest(d_env, digest, DIGEST_LEN);
crypto_free_digest_env(d_env);
if (!expected_bandwidth_usage) {
char buf1[ISO_TIME_LEN+1];
char buf2[ISO_TIME_LEN+1];
format_local_iso_time(buf1, interval_start_time);
format_local_iso_time(buf2, interval_end_time);
time_to_exhaust_bw = GUESS_TIME_TO_USE_BANDWIDTH;
interval_wakeup_time = interval_start_time;
log_notice(LD_ACCT,
"Configured hibernation. This interval begins at %s "
"and ends at %s. We have no prior estimate for bandwidth, so "
"we will start out awake and hibernate when we exhaust our quota.",
buf1, buf2);
return;
}
time_in_interval = interval_end_time - interval_start_time;
time_to_exhaust_bw =
(get_options()->AccountingMax/expected_bandwidth_usage)*60;
if (time_to_exhaust_bw > TIME_MAX) {
time_to_exhaust_bw = TIME_MAX;
time_to_consider = 0;
} else {
time_to_consider = time_in_interval - (int)time_to_exhaust_bw;
}
if (time_to_consider<=0) {
interval_wakeup_time = interval_start_time;
} else {
/* XXX can we simplify this just by picking a random (non-deterministic)
* time to be up? If we go down and come up, then we pick a new one. Is
* that good enough? -RD */
/* This is not a perfectly unbiased conversion, but it is good enough:
* in the worst case, the first half of the day is 0.06 percent likelier
* to be chosen than the last half. */
interval_wakeup_time = interval_start_time +
(get_uint32(digest) % time_to_consider);
format_iso_time(buf, interval_wakeup_time);
}
{
char buf1[ISO_TIME_LEN+1];
char buf2[ISO_TIME_LEN+1];
char buf3[ISO_TIME_LEN+1];
char buf4[ISO_TIME_LEN+1];
time_t down_time;
if (interval_wakeup_time+time_to_exhaust_bw > TIME_MAX)
down_time = TIME_MAX;
else
down_time = (time_t)(interval_wakeup_time+time_to_exhaust_bw);
if (down_time>interval_end_time)
down_time = interval_end_time;
format_local_iso_time(buf1, interval_start_time);
format_local_iso_time(buf2, interval_wakeup_time);
format_local_iso_time(buf3, down_time);
format_local_iso_time(buf4, interval_end_time);
log_notice(LD_ACCT,
"Configured hibernation. This interval began at %s; "
"the scheduled wake-up time %s %s; "
"we expect%s to exhaust our quota for this interval around %s; "
"the next interval begins at %s (all times local)",
buf1,
time(NULL) UINT32_MAX)
expected = UINT32_MAX;
tor_snprintf(cp, sizeof(buf),
"%d\n%s\n%s\n"U64_FORMAT"\n"U64_FORMAT"\n%lu\n%lu\n",
BW_ACCOUNTING_VERSION,
time1,
time2,
U64_PRINTF_ARG(ROUND_UP(n_bytes_read_in_interval)),
U64_PRINTF_ARG(ROUND_UP(n_bytes_written_in_interval)),
(unsigned long)n_seconds_active_in_interval,
(unsigned long)expected);
tor_snprintf(fname, sizeof(fname), "%s/bw_accounting",
get_options()->DataDirectory);
if (!get_options()->AvoidDiskWrites || (last_recorded + 3600 < now)) {
r = write_str_to_file(fname, buf, 0);
last_recorded = now;
}
/* Now update the state */
state->AccountingIntervalStart = interval_start_time;
state->AccountingBytesReadInInterval = ROUND_UP(n_bytes_read_in_interval);
state->AccountingBytesWrittenInInterval =
ROUND_UP(n_bytes_written_in_interval);
state->AccountingSecondsActive = n_seconds_active_in_interval;
state->AccountingExpectedUsage = expected_bandwidth_usage;
or_state_mark_dirty(state,
now+(get_options()->AvoidDiskWrites ? 7200 : 60));
return r;
}
#undef ROUND_UP
/** Read stored accounting information from disk. Return 0 on success;
* return -1 and change nothing on failure. */
static int
read_bandwidth_usage(void)
{
char *s = NULL;
char fname[512];
time_t t1, t2;
uint64_t n_read, n_written;
uint32_t expected_bw, n_seconds;
smartlist_t *elts = NULL;
int ok, use_state=0, r=-1;
or_state_t *state = get_or_state();
tor_snprintf(fname, sizeof(fname), "%s/bw_accounting",
get_options()->DataDirectory);
elts = smartlist_create();
if ((s = read_file_to_str(fname, 0, NULL)) == NULL) {
/* We have an old-format bw_accounting file. */
use_state = 1;
}
if (!use_state) {
smartlist_split_string(elts, s, "\n",
SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK,0);
tor_free(s);
if (smartlist_len(elts)<1 ||
atoi(smartlist_get(elts,0)) != BW_ACCOUNTING_VERSION) {
log_warn(LD_ACCT, "Unrecognized bw_accounting file version: %s",
(const char*)smartlist_get(elts,0));
use_state = 1;
}
}
if (!use_state && smartlist_len(elts) < 7) {
log_warn(LD_ACCT, "Corrupted bw_accounting file: %d lines",
smartlist_len(elts));
use_state = 1;
}
if (!use_state && parse_iso_time(smartlist_get(elts,2), &t2)) {
log_warn(LD_ACCT, "Error parsing bandwidth usage last-written time");
use_state = 1;
}
if (use_state || t2 <= state->LastWritten) {
/* Okay; it looks like the state file is more up-to-date than the
* bw_accounting file, or the bw_accounting file is nonexistant,
* or the bw_accounting file is corrupt.
*/
log_info(LD_ACCT, "Reading bandwdith accounting data from state file");
n_bytes_read_in_interval = state->AccountingBytesReadInInterval;
n_bytes_written_in_interval = state->AccountingBytesWrittenInInterval;
n_seconds_active_in_interval = state->AccountingSecondsActive;
interval_start_time = state->AccountingIntervalStart;
expected_bandwidth_usage = state->AccountingExpectedUsage;
r = 0;
goto done;
}
if (parse_iso_time(smartlist_get(elts,1), &t1)) {
log_warn(LD_ACCT, "Error parsing bandwidth usage start time.");
goto done;
}
n_read = tor_parse_uint64(smartlist_get(elts,3), 10, 0, UINT64_MAX,
&ok, NULL);
if (!ok) {
log_warn(LD_ACCT, "Error parsing number of bytes read");
goto done;
}
n_written = tor_parse_uint64(smartlist_get(elts,4), 10, 0, UINT64_MAX,
&ok, NULL);
if (!ok) {
log_warn(LD_ACCT, "Error parsing number of bytes written");
goto done;
}
n_seconds = (uint32_t)tor_parse_ulong(smartlist_get(elts,5), 10,0,ULONG_MAX,
&ok, NULL);
if (!ok) {
log_warn(LD_ACCT, "Error parsing number of seconds live");
goto done;
}
expected_bw =(uint32_t)tor_parse_ulong(smartlist_get(elts,6), 10,0,ULONG_MAX,
&ok, NULL);
if (!ok) {
log_warn(LD_ACCT, "Error parsing expected bandwidth");
goto done;
}
n_bytes_read_in_interval = n_read;
n_bytes_written_in_interval = n_written;
n_seconds_active_in_interval = n_seconds;
interval_start_time = t1;
expected_bandwidth_usage = expected_bw;
log_info(LD_ACCT,
"Successfully read bandwidth accounting file written at %s "
"for interval starting at %s. We have been active for %lu seconds in "
"this interval. At the start of the interval, we expected to use "
"about %lu KB per second. ("U64_FORMAT" bytes read so far, "
U64_FORMAT" bytes written so far)",
(char*)smartlist_get(elts,2),
(char*)smartlist_get(elts,1),
(unsigned long)n_seconds_active_in_interval,
(unsigned long)(expected_bandwidth_usage*1024/60),
U64_PRINTF_ARG(n_bytes_read_in_interval),
U64_PRINTF_ARG(n_bytes_written_in_interval));
r = 0;
done:
if (elts) {
SMARTLIST_FOREACH(elts, char *, cp, tor_free(cp));
smartlist_free(elts);
}
return r;
}
/** Return true iff we have sent/received all the bytes we are willing
* to send/receive this interval. */
static int
hibernate_hard_limit_reached(void)
{
uint64_t hard_limit = get_options()->AccountingMax;
if (!hard_limit)
return 0;
return n_bytes_read_in_interval >= hard_limit
|| n_bytes_written_in_interval >= hard_limit;
}
/** Return true iff we have sent/received almost all the bytes we are willing
* to send/receive this interval. */
static int
hibernate_soft_limit_reached(void)
{
uint64_t soft_limit = DBL_TO_U64(U64_TO_DBL(get_options()->AccountingMax)
* .95);
if (!soft_limit)
return 0;
return n_bytes_read_in_interval >= soft_limit
|| n_bytes_written_in_interval >= soft_limit;
}
/** Called when we get a SIGINT, or when bandwidth soft limit is
* reached. Puts us into "loose hibernation": we don't accept new
* connections, but we continue handling old ones. */
static void
hibernate_begin(int new_state, time_t now)
{
connection_t *conn;
or_options_t *options = get_options();
if (new_state == HIBERNATE_STATE_EXITING &&
hibernate_state != HIBERNATE_STATE_LIVE) {
log_notice(LD_GENERAL,"Sigint received %s; exiting now.",
hibernate_state == HIBERNATE_STATE_EXITING ?
"a second time" : "while hibernating");
tor_cleanup();
exit(0);
}
/* close listeners. leave control listener(s). */
while ((conn = connection_get_by_type(CONN_TYPE_OR_LISTENER)) ||
(conn = connection_get_by_type(CONN_TYPE_AP_LISTENER)) ||
(conn = connection_get_by_type(CONN_TYPE_AP_TRANS_LISTENER)) ||
(conn = connection_get_by_type(CONN_TYPE_AP_NATD_LISTENER)) ||
(conn = connection_get_by_type(CONN_TYPE_DIR_LISTENER))) {
log_info(LD_NET,"Closing listener type %d", conn->type);
connection_mark_for_close(conn);
}
/* XXX kill intro point circs */
/* XXX upload rendezvous service descriptors with no intro points */
if (new_state == HIBERNATE_STATE_EXITING) {
log_notice(LD_GENERAL,"Interrupt: will shut down in %d seconds. Interrupt "
"again to exit now.", options->ShutdownWaitLength);
shutdown_time = time(NULL) + options->ShutdownWaitLength;
} else { /* soft limit reached */
hibernate_end_time = interval_end_time;
}
hibernate_state = new_state;
accounting_record_bandwidth_usage(now, get_or_state());
or_state_mark_dirty(get_or_state(),
get_options()->AvoidDiskWrites ? now+600 : 0);
}
/** Called when we've been hibernating and our timeout is reached. */
static void
hibernate_end(int new_state)
{
tor_assert(hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH ||
hibernate_state == HIBERNATE_STATE_DORMANT);
/* listeners will be relaunched in run_scheduled_events() in main.c */
log_notice(LD_ACCT,"Hibernation period ended. Resuming normal activity.");
hibernate_state = new_state;
hibernate_end_time = 0; /* no longer hibernating */
stats_n_seconds_working = 0; /* reset published uptime */
}
/** A wrapper around hibernate_begin, for when we get SIGINT. */
void
hibernate_begin_shutdown(void)
{
hibernate_begin(HIBERNATE_STATE_EXITING, time(NULL));
}
/** Return true iff we are currently hibernating. */
int
we_are_hibernating(void)
{
return hibernate_state != HIBERNATE_STATE_LIVE;
}
/** If we aren't currently dormant, close all connections and become
* dormant. */
static void
hibernate_go_dormant(time_t now)
{
connection_t *conn;
if (hibernate_state == HIBERNATE_STATE_DORMANT)
return;
else if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH)
hibernate_state = HIBERNATE_STATE_DORMANT;
else
hibernate_begin(HIBERNATE_STATE_DORMANT, now);
log_notice(LD_ACCT,"Going dormant. Blowing away remaining connections.");
/* Close all OR/AP/exit conns. Leave dir conns because we still want
* to be able to upload server descriptors so people know we're still
* running, and download directories so we can detect if we're obsolete.
* Leave control conns because we still want to be controllable.
*/
while ((conn = connection_get_by_type(CONN_TYPE_OR)) ||
(conn = connection_get_by_type(CONN_TYPE_AP)) ||
(conn = connection_get_by_type(CONN_TYPE_EXIT))) {
if (CONN_IS_EDGE(conn))
connection_edge_end(TO_EDGE_CONN(conn), END_STREAM_REASON_HIBERNATING,
TO_EDGE_CONN(conn)->cpath_layer);
log_info(LD_NET,"Closing conn type %d", conn->type);
if (conn->type == CONN_TYPE_AP) /* send socks failure if needed */
connection_mark_unattached_ap(TO_EDGE_CONN(conn),
END_STREAM_REASON_HIBERNATING);
else
connection_mark_for_close(conn);
}
if (now < interval_wakeup_time)
hibernate_end_time = interval_wakeup_time;
else
hibernate_end_time = interval_end_time;
accounting_record_bandwidth_usage(now, get_or_state());
or_state_mark_dirty(get_or_state(),
get_options()->AvoidDiskWrites ? now+600 : 0);
}
/** Called when hibernate_end_time has arrived. */
static void
hibernate_end_time_elapsed(time_t now)
{
char buf[ISO_TIME_LEN+1];
/* The interval has ended, or it is wakeup time. Find out which. */
accounting_run_housekeeping(now);
if (interval_wakeup_time <= now) {
/* The interval hasn't changed, but interval_wakeup_time has passed.
* It's time to wake up and start being a server. */
hibernate_end(HIBERNATE_STATE_LIVE);
return;
} else {
/* The interval has changed, and it isn't time to wake up yet. */
hibernate_end_time = interval_wakeup_time;
format_iso_time(buf,interval_wakeup_time);
if (hibernate_state != HIBERNATE_STATE_DORMANT) {
/* We weren't sleeping before; we should sleep now. */
log_notice(LD_ACCT,
"Accounting period ended. Commencing hibernation until "
"%s GMT", buf);
hibernate_go_dormant(now);
} else {
log_notice(LD_ACCT,
"Accounting period ended. This period, we will hibernate"
" until %s GMT",buf);
}
}
}
/** Consider our environment and decide if it's time
* to start/stop hibernating.
*/
void
consider_hibernation(time_t now)
{
int accounting_enabled = get_options()->AccountingMax != 0;
char buf[ISO_TIME_LEN+1];
/* If we're in 'exiting' mode, then we just shut down after the interval
* elapses. */
if (hibernate_state == HIBERNATE_STATE_EXITING) {
tor_assert(shutdown_time);
if (shutdown_time <= now) {
log_notice(LD_GENERAL, "Clean shutdown finished. Exiting.");
tor_cleanup();
exit(0);
}
return; /* if exiting soon, don't worry about bandwidth limits */
}
if (hibernate_state == HIBERNATE_STATE_DORMANT) {
/* We've been hibernating because of bandwidth accounting. */
tor_assert(hibernate_end_time);
if (hibernate_end_time > now && accounting_enabled) {
/* If we're hibernating, don't wake up until it's time, regardless of
* whether we're in a new interval. */
return ;
} else {
hibernate_end_time_elapsed(now);
}
}
/* Else, we aren't hibernating. See if it's time to start hibernating, or to
* go dormant. */
if (hibernate_state == HIBERNATE_STATE_LIVE) {
if (hibernate_soft_limit_reached()) {
log_notice(LD_ACCT,
"Bandwidth soft limit reached; commencing hibernation.");
hibernate_begin(HIBERNATE_STATE_LOWBANDWIDTH, now);
} else if (accounting_enabled && now < interval_wakeup_time) {
format_local_iso_time(buf,interval_wakeup_time);
log_notice(LD_ACCT,
"Commencing hibernation. We will wake up at %s local time.",
buf);
hibernate_go_dormant(now);
}
}
if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) {
if (!accounting_enabled) {
hibernate_end_time_elapsed(now);
} else if (hibernate_hard_limit_reached()) {
hibernate_go_dormant(now);
} else if (hibernate_end_time <= now) {
/* The hibernation period ended while we were still in lowbandwidth.*/
hibernate_end_time_elapsed(now);
}
}
}
/** Helper function: called when we get a GETINFO request for an
* accounting-related key on the control connection conn. If we can
* answer the request for question, then set *answer to a newly
* allocated string holding the result. Otherwise, set *answer to
* NULL. */
int
getinfo_helper_accounting(control_connection_t *conn,
const char *question, char **answer)
{
(void) conn;
if (!strcmp(question, "accounting/enabled")) {
*answer = tor_strdup(accounting_is_enabled(get_options()) ? "1" : "0");
} else if (!strcmp(question, "accounting/hibernating")) {
if (hibernate_state == HIBERNATE_STATE_DORMANT)
*answer = tor_strdup("hard");
else if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH)
*answer = tor_strdup("soft");
else
*answer = tor_strdup("awake");
} else if (!strcmp(question, "accounting/bytes")) {
*answer = tor_malloc(32);
tor_snprintf(*answer, 32, U64_FORMAT" "U64_FORMAT,
U64_PRINTF_ARG(n_bytes_read_in_interval),
U64_PRINTF_ARG(n_bytes_written_in_interval));
} else if (!strcmp(question, "accounting/bytes-left")) {
uint64_t limit = get_options()->AccountingMax;
uint64_t read_left = 0, write_left = 0;
if (n_bytes_read_in_interval < limit)
read_left = limit - n_bytes_read_in_interval;
if (n_bytes_written_in_interval < limit)
write_left = limit - n_bytes_written_in_interval;
*answer = tor_malloc(64);
tor_snprintf(*answer, 64, U64_FORMAT" "U64_FORMAT,
U64_PRINTF_ARG(read_left), U64_PRINTF_ARG(write_left));
} else if (!strcmp(question, "accounting/interval-start")) {
*answer = tor_malloc(ISO_TIME_LEN+1);
format_iso_time(*answer, interval_start_time);
} else if (!strcmp(question, "accounting/interval-wake")) {
*answer = tor_malloc(ISO_TIME_LEN+1);
format_iso_time(*answer, interval_wakeup_time);
} else if (!strcmp(question, "accounting/interval-end")) {
*answer = tor_malloc(ISO_TIME_LEN+1);
format_iso_time(*answer, interval_end_time);
} else {
*answer = NULL;
}
return 0;
}