/* Copyright 2004 Roger Dingledine, Nick Mathewson. */ /* See LICENSE for licensing information */ /* $Id$ */ const char hibernate_c_id[] = "$Id$"; /** * \file hibernate.c * \brief Functions to close listeners, stop allowing new circuits, * etc in preparation for closing down or going dormant; and to track * bandwidth and time intervals to know when to hibernate and when to * stop hibernating. **/ /* hibernating, phase 1: - send destroy in response to create cells - send end (policy failed) in response to begin cells - close an OR conn when it has no circuits hibernating, phase 2: (entered when bandwidth hard limit reached) - close all OR/AP/exit conns) */ #include "or.h" #define HIBERNATE_STATE_LIVE 1 #define HIBERNATE_STATE_EXITING 2 #define HIBERNATE_STATE_LOWBANDWIDTH 3 #define HIBERNATE_STATE_DORMANT 4 #define SHUTDOWN_WAIT_LENGTH 30 /* seconds */ extern long stats_n_seconds_working; /* published uptime */ static int hibernate_state = HIBERNATE_STATE_LIVE; /** If are hibernating, when do we plan to wake up? Set to 0 if we * aren't hibernating. */ static time_t hibernate_end_time = 0; typedef enum { UNIT_MONTH=1, UNIT_WEEK=2, UNIT_DAY=3, } time_unit_t; /* Fields for accounting logic. Accounting overview: * * Accounting is designed to ensure that no more than N bytes are sent * in either direction over a given interval (currently, one month, * starting at 0:00 GMT an arbitrary day within the month). We could * try to do this by choking our bandwidth to a trickle, but that * would make our streams useless. Instead, we estimate what our * bandwidth usage will be, and guess how long we'll be able to * provide that much bandwidth before hitting our limit. We then * choose a random time within the accounting interval to come up (so * that we don't get 50 Tors running on the 1st of the month and none * on the 30th). * * Each interval runs as follows: * * 1. We guess our bandwidth usage, based on how much we used * last time. We choose a "wakeup time" within the interval to come up. * 2. Until the chosen wakeup time, we hibernate. * 3. We come up at the wakeup time, and provide bandwidth until we are * "very close" to running out. * 4. Then we go into low-bandwidth mode, and stop accepting new * connections, but provide bandwidth until we run out. * 5. Then we hibernate until the end of the interval. * * If the interval ends before we run out of bandwidth, we go back to * step one. */ /** How many bytes have we read/written in this accounting interval? */ static uint64_t n_bytes_read_in_interval = 0; static uint64_t n_bytes_written_in_interval = 0; /** How many seconds have we been running this interval? */ static uint32_t n_seconds_active_in_interval = 0; /** When did this accounting interval start? */ static time_t interval_start_time = 0; /** When will this accounting interval end? */ static time_t interval_end_time = 0; /** How far into the accounting interval should we hibernate? */ static time_t interval_wakeup_time = 0; /** How much bandwidth do we 'expect' to use per minute? (0 if we have no * info from the last period.) */ static uint32_t expected_bandwidth_usage = 0; /** What unit are we using for our accounting? */ static time_unit_t cfg_unit = UNIT_MONTH; /** How many days,hours,minutes into each unit does our accounting interval * start? */ static int cfg_start_day = 0; static int cfg_start_hour = 0; static int cfg_start_min = 0; static void reset_accounting(time_t now); static int read_bandwidth_usage(void); static time_t start_of_accounting_period_after(time_t now); static time_t start_of_accounting_period_containing(time_t now); static void accounting_set_wakeup_time(void); /* ************ * Functions for bandwidth accounting. * ************/ /** Configure accounting start/end time settings based on * options->AccountingStart. Return 0 on success, -1 on failure. If * validate_only is true, do not change the current settings. */ int accounting_parse_options(or_options_t *options, int validate_only) { time_unit_t unit; int ok, idx; long d,h,m; smartlist_t *items; const char *v = options->AccountingStart; const char *s; char *cp; if (!v) { if (!validate_only) { cfg_unit = UNIT_MONTH; cfg_start_day = 1; cfg_start_hour = 0; cfg_start_min = 0; } return 0; } items = smartlist_create(); smartlist_split_string(items, v, NULL, SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK,0); if (smartlist_len(items)<2) { log_fn(LOG_WARN, "Too few arguments to AccountingStart"); goto err; } s = smartlist_get(items,0); if (0==strcasecmp(s, "month")) { unit = UNIT_MONTH; } else if (0==strcasecmp(s, "week")) { unit = UNIT_WEEK; } else if (0==strcasecmp(s, "day")) { unit = UNIT_DAY; } else { log_fn(LOG_WARN, "Unrecognized accounting unit '%s': only 'month', 'week', and 'day' are supported.", s); goto err; } switch (unit) { case UNIT_WEEK: d = tor_parse_long(smartlist_get(items,1), 10, 1, 7, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Weekly accounting must start begin on a day between 1(Monday) and 7 (Sunday)"); goto err; } break; case UNIT_MONTH: d = tor_parse_long(smartlist_get(items,1), 10, 1, 28, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Monthly accounting must start begin on a day between 1 and 28"); goto err; } break; case UNIT_DAY: d = 0; break; default: tor_assert(0); } idx = unit==UNIT_DAY?1:2; if (smartlist_len(items) != (idx+1)) { log_fn(LOG_WARN, "Accounting unit '%s' requires %d arguments", s, idx+1); goto err; } s = smartlist_get(items, idx); h = tor_parse_long(s, 10, 0, 23, &ok, &cp); if (!ok) { log_fn(LOG_WARN, "Accounting start time not parseable: bad hour."); goto err; } if (!cp || *cp!=':') { log_fn(LOG_WARN,"Accounting start time not parseable: not in HH:MM format"); goto err; } m = tor_parse_long(cp+1, 10, 0, 59, &ok, &cp); if (!ok) { log_fn(LOG_WARN, "Accounting start time not parseable: bad minute"); goto err; } if (!cp || *cp!='\0') { log_fn(LOG_WARN,"Accounting start time not parseable: not in HH:MM format"); goto err; } if (!validate_only) { cfg_unit = unit; cfg_start_day = (int)d; cfg_start_hour = (int)h; cfg_start_min = (int)m; } SMARTLIST_FOREACH(items, char *, s, tor_free(s)); smartlist_free(items); return 0; err: SMARTLIST_FOREACH(items, char *, s, tor_free(s)); smartlist_free(items); return -1; } /** If we want to manage the accounting system and potentially * hibernate, return 1, else return 0. */ int accounting_is_enabled(or_options_t *options) { if (options->AccountingMax) return 1; return 0; } /** Called from main.c to tell us that seconds seconds have * passed, n_read bytes have been read, and n_written * bytes have been written. */ void accounting_add_bytes(size_t n_read, size_t n_written, int seconds) { n_bytes_read_in_interval += n_read; n_bytes_written_in_interval += n_written; /* If we haven't been called in 10 seconds, we're probably jumping * around in time. */ n_seconds_active_in_interval += (seconds < 10) ? seconds : 0; } /** If get_end, return the end of the accounting period that contains * the time now. Else, return the start of the accounting * period that contains the time now */ static time_t edge_of_accounting_period_containing(time_t now, int get_end) { int before; struct tm *tm; tm = localtime(&now); /* Set 'before' to true iff the current time is before the hh:mm * changeover time for today. */ before = tm->tm_hour < cfg_start_hour || (tm->tm_hour == cfg_start_hour && tm->tm_min < cfg_start_min); /* Dispatch by unit. First, find the start day of the given period; * then, if get_end is true, increment to the end day. */ switch (cfg_unit) { case UNIT_MONTH: { /* If this is before the Nth, we want the Nth of last month. */ if (tm->tm_mday < cfg_start_day || (tm->tm_mday < cfg_start_day && before)) { --tm->tm_mon; } /* Otherwise, the month is correct. */ tm->tm_mday = cfg_start_day; if (get_end) ++tm->tm_mon; break; } case UNIT_WEEK: { /* What is the 'target' day of the week in struct tm format? (We say Sunday==7; struct tm says Sunday==0.) */ int wday = cfg_start_day % 7; /* How many days do we subtract from today to get to the right day? */ int delta = (7+tm->tm_wday-wday)%7; /* If we are on the right day, but the changeover hasn't happened yet, * then subtract a whole week. */ if (delta == 0 && before) delta = 7; tm->tm_mday -= delta; if (get_end) tm->tm_mday += 7; break; } case UNIT_DAY: if (before) --tm->tm_mday; if (get_end) ++tm->tm_mday; break; default: tor_assert(0); } tm->tm_hour = cfg_start_hour; tm->tm_min = cfg_start_min; tm->tm_sec = 0; tm->tm_isdst = -1; /* Autodetect DST */ return mktime(tm); } /** Return the start of the accounting period containing the time * now. */ static time_t start_of_accounting_period_containing(time_t now) { return edge_of_accounting_period_containing(now, 0); } /** Return the start of the accounting period that comes after the one * containing the time now. */ static time_t start_of_accounting_period_after(time_t now) { return edge_of_accounting_period_containing(now, 1); } /** Initialize the accounting subsystem. */ void configure_accounting(time_t now) { /* Try to remember our recorded usage. */ if (!interval_start_time) read_bandwidth_usage(); /* If we fail, we'll leave values at zero, and * reset below.*/ if (!interval_start_time || start_of_accounting_period_after(interval_start_time) <= now) { /* We didn't have recorded usage, or we don't have recorded usage * for this interval. Start a new interval. */ log_fn(LOG_INFO, "Starting new accounting interval."); reset_accounting(now); } else if (interval_start_time == start_of_accounting_period_containing(interval_start_time)) { log_fn(LOG_INFO, "Continuing accounting interval."); /* We are in the interval we thought we were in. Do nothing.*/ interval_end_time = start_of_accounting_period_after(interval_start_time); } else { log_fn(LOG_WARN, "Mismatched accounting interval; starting a fresh one."); reset_accounting(now); } accounting_set_wakeup_time(); } /** Set expected_bandwidth_usage based on how much we sent/received * per minute last interval (if we were up for at least 30 minutes), * or based on our declared bandwidth otherwise. */ static void update_expected_bandwidth(void) { uint64_t used, expected; uint64_t max_configured = (get_options()->BandwidthRate * 60); if (n_seconds_active_in_interval < 1800) { /* If we haven't gotten enough data last interval, set 'expected' * to 0. This will set our wakeup to the start of the interval. * Next interval, we'll choose our starting time based on how much * we sent this interval. */ expected = 0; } else { used = n_bytes_written_in_interval < n_bytes_read_in_interval ? n_bytes_read_in_interval : n_bytes_written_in_interval; expected = used / (n_seconds_active_in_interval / 60); if (expected > max_configured) expected = max_configured; } if (expected > UINT32_MAX) expected = UINT32_MAX; expected_bandwidth_usage = (uint32_t) expected; } /** Called at the start of a new accounting interval: reset our * expected bandwidth usage based on what happened last time, set up * the start and end of the interval, and clear byte/time totals. */ static void reset_accounting(time_t now) { log_fn(LOG_INFO, "Starting new accounting interval."); update_expected_bandwidth(); interval_start_time = start_of_accounting_period_containing(now); interval_end_time = start_of_accounting_period_after(interval_start_time); n_bytes_read_in_interval = 0; n_bytes_written_in_interval = 0; n_seconds_active_in_interval = 0; } /** Return true iff we should save our bandwidth usage to disk. */ static INLINE int time_to_record_bandwidth_usage(time_t now) { /* Note every 60 sec */ #define NOTE_INTERVAL (60) /* Or every 20 megabytes */ #define NOTE_BYTES 20*(1024*1024) static uint64_t last_read_bytes_noted = 0; static uint64_t last_written_bytes_noted = 0; static time_t last_time_noted = 0; if (last_time_noted + NOTE_INTERVAL <= now || last_read_bytes_noted + NOTE_BYTES <= n_bytes_read_in_interval || last_written_bytes_noted + NOTE_BYTES <= n_bytes_written_in_interval || (interval_end_time && interval_end_time <= now)) { last_time_noted = now; last_read_bytes_noted = n_bytes_read_in_interval; last_written_bytes_noted = n_bytes_written_in_interval; return 1; } return 0; } void accounting_run_housekeeping(time_t now) { if (now >= interval_end_time) { configure_accounting(now); } if (time_to_record_bandwidth_usage(now)) { if (accounting_record_bandwidth_usage(now)) { log_fn(LOG_ERR, "Couldn't record bandwidth usage; exiting."); exit(1); } } } /** Based on our interval and our estimated bandwidth, choose a * deterministic (but random-ish) time to wake up. */ static void accounting_set_wakeup_time(void) { char buf[ISO_TIME_LEN+1]; char digest[DIGEST_LEN]; crypto_digest_env_t *d_env; int time_in_interval; int time_to_exhaust_bw; int time_to_consider; if (! identity_key_is_set()) { if (init_keys() < 0) { log_fn(LOG_ERR, "Error initializing keys"); tor_assert(0); } } format_iso_time(buf, interval_start_time); crypto_pk_get_digest(get_identity_key(), digest); d_env = crypto_new_digest_env(); crypto_digest_add_bytes(d_env, buf, ISO_TIME_LEN); crypto_digest_add_bytes(d_env, digest, DIGEST_LEN); crypto_digest_get_digest(d_env, digest, DIGEST_LEN); crypto_free_digest_env(d_env); if (!expected_bandwidth_usage) { char buf1[ISO_TIME_LEN+1]; char buf2[ISO_TIME_LEN+1]; format_local_iso_time(buf1, interval_start_time); format_local_iso_time(buf2, interval_end_time); time_to_exhaust_bw = 24*60*60; interval_wakeup_time = interval_start_time; log_fn(LOG_NOTICE, "Configured hibernation. This interval begins at %s " "and ends at %s. We have no prior estimate for bandwidth, so " "we will start out awake and hibernate when we exhaust our quota.", buf1, buf2); return; } time_to_exhaust_bw = (int) (get_options()->AccountingMax/expected_bandwidth_usage)*60; time_in_interval = interval_end_time - interval_start_time; time_to_consider = time_in_interval - time_to_exhaust_bw; if (time_to_consider<=0) { interval_wakeup_time = interval_start_time; } else { /* XXX can we simplify this just by picking a random (non-deterministic) * time to be up? If we go down and come up, then we pick a new one. Is * that good enough? -RD */ /* This is not a perfectly unbiased conversion, but it is good enough: * in the worst case, the first half of the day is 0.06 percent likelier * to be chosen than the last half. */ interval_wakeup_time = interval_start_time + (get_uint32(digest) % time_to_consider); format_iso_time(buf, interval_wakeup_time); } { char buf1[ISO_TIME_LEN+1]; char buf2[ISO_TIME_LEN+1]; char buf3[ISO_TIME_LEN+1]; char buf4[ISO_TIME_LEN+1]; time_t down_time = interval_wakeup_time+time_to_exhaust_bw; if (down_time>interval_end_time) down_time = interval_end_time; format_local_iso_time(buf1, interval_start_time); format_local_iso_time(buf2, interval_wakeup_time); format_local_iso_time(buf3, down_timeDataDirectory); return write_str_to_file(fname, buf, 0); } /** Read stored accounting information from disk. Return 0 on success; * return -1 and change nothing on failure. */ static int read_bandwidth_usage(void) { char *s = NULL; char fname[512]; time_t t1, t2; uint64_t n_read, n_written; uint32_t expected_bw, n_seconds; smartlist_t *elts; int ok; tor_snprintf(fname, sizeof(fname), "%s/bw_accounting", get_options()->DataDirectory); if (!(s = read_file_to_str(fname, 0))) { return 0; } elts = smartlist_create(); smartlist_split_string(elts, s, "\n", SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK,0); tor_free(s); if (smartlist_len(elts)<1 || atoi(smartlist_get(elts,0)) != BW_ACCOUNTING_VERSION) { log_fn(LOG_WARN, "Unrecognized bw_accounting file version: %s", (const char*)smartlist_get(elts,0)); goto err; } if (smartlist_len(elts) < 7) { log_fn(LOG_WARN, "Corrupted bw_accounting file: %d lines", smartlist_len(elts)); goto err; } if (parse_iso_time(smartlist_get(elts,1), &t1)) { log_fn(LOG_WARN, "Error parsing bandwidth usage start time."); goto err; } if (parse_iso_time(smartlist_get(elts,2), &t2)) { log_fn(LOG_WARN, "Error parsing bandwidth usage last-written time"); goto err; } n_read = tor_parse_uint64(smartlist_get(elts,3), 10, 0, UINT64_MAX, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Error parsing number of bytes read"); goto err; } n_written = tor_parse_uint64(smartlist_get(elts,4), 10, 0, UINT64_MAX, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Error parsing number of bytes read"); goto err; } n_seconds = (uint32_t)tor_parse_ulong(smartlist_get(elts,5), 10,0,ULONG_MAX, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Error parsing number of seconds live"); goto err; } expected_bw =(uint32_t)tor_parse_ulong(smartlist_get(elts,6), 10,0,ULONG_MAX, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Error parsing expected bandwidth"); goto err; } n_bytes_read_in_interval = n_read; n_bytes_written_in_interval = n_written; n_seconds_active_in_interval = n_seconds; interval_start_time = t1; expected_bandwidth_usage = expected_bw; log_fn(LOG_INFO, "Successfully read bandwidth accounting file written at %s for interval starting at %s. We have been active for %lu seconds in this interval. At the start of the interval, we expected to use about %lu KB per second. ("U64_FORMAT" bytes read so far, "U64_FORMAT" bytes written so far)", (char*)smartlist_get(elts,2), (char*)smartlist_get(elts,1), (unsigned long)n_seconds_active_in_interval, (unsigned long)((uint64_t)expected_bandwidth_usage*1024/60), U64_PRINTF_ARG(n_bytes_read_in_interval), U64_PRINTF_ARG(n_bytes_written_in_interval)); SMARTLIST_FOREACH(elts, char *, cp, tor_free(cp)); smartlist_free(elts); return 0; err: SMARTLIST_FOREACH(elts, char *, cp, tor_free(cp)); smartlist_free(elts); return -1; } /** Return true iff we have sent/received all the bytes we are willing * to send/receive this interval. */ static int hibernate_hard_limit_reached(void) { uint64_t hard_limit = get_options()->AccountingMax; if (!hard_limit) return 0; return n_bytes_read_in_interval >= hard_limit || n_bytes_written_in_interval >= hard_limit; } /** Return true iff we have sent/received almost all the bytes we are willing * to send/receive this interval. */ static int hibernate_soft_limit_reached(void) { uint64_t soft_limit = (uint64_t) ((get_options()->AccountingMax) * .99); if (!soft_limit) return 0; return n_bytes_read_in_interval >= soft_limit || n_bytes_written_in_interval >= soft_limit; } /** Called when we get a SIGINT, or when bandwidth soft limit is * reached. Puts us into "loose hibernation": we don't accept new * connections, but we continue handling old ones. */ static void hibernate_begin(int new_state, time_t now) { connection_t *conn; if (hibernate_state == HIBERNATE_STATE_EXITING) { /* we've been called twice now. close immediately. */ log(LOG_NOTICE,"Second sigint received; exiting now."); tor_cleanup(); exit(0); } /* close listeners. leave control listener(s). */ while ((conn = connection_get_by_type(CONN_TYPE_OR_LISTENER)) || (conn = connection_get_by_type(CONN_TYPE_AP_LISTENER)) || (conn = connection_get_by_type(CONN_TYPE_DIR_LISTENER))) { log_fn(LOG_INFO,"Closing listener type %d", conn->type); connection_mark_for_close(conn); } /* XXX kill intro point circs */ /* XXX upload rendezvous service descriptors with no intro points */ if (new_state == HIBERNATE_STATE_EXITING) { log(LOG_NOTICE,"Interrupt: will shut down in %d seconds. Interrupt again to exit now.", SHUTDOWN_WAIT_LENGTH); hibernate_end_time = time(NULL) + SHUTDOWN_WAIT_LENGTH; } else { /* soft limit reached */ hibernate_end_time = interval_end_time; } hibernate_state = new_state; accounting_record_bandwidth_usage(now); } /** Called when we've been hibernating and our timeout is reached. */ static void hibernate_end(int new_state) { tor_assert(hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH || hibernate_state == HIBERNATE_STATE_DORMANT); /* listeners will be relaunched in run_scheduled_events() in main.c */ log_fn(LOG_NOTICE,"Hibernation period ended. Resuming normal activity."); hibernate_state = new_state; hibernate_end_time = 0; /* no longer hibernating */ stats_n_seconds_working = 0; /* reset published uptime */ } /** A wrapper around hibernate_begin, for when we get SIGINT. */ void hibernate_begin_shutdown(void) { hibernate_begin(HIBERNATE_STATE_EXITING, time(NULL)); } /** Return true iff we are currently hibernating. */ int we_are_hibernating(void) { return hibernate_state != HIBERNATE_STATE_LIVE; } /** If we aren't currently dormant, close all connections and become * dormant. */ static void hibernate_go_dormant(time_t now) { connection_t *conn; if (hibernate_state == HIBERNATE_STATE_DORMANT) return; else if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) hibernate_state = HIBERNATE_STATE_DORMANT; else hibernate_begin(HIBERNATE_STATE_DORMANT, now); log_fn(LOG_NOTICE,"Going dormant. Blowing away remaining connections."); /* Close all OR/AP/exit conns. Leave dir conns because we still want * to be able to upload server descriptors so people know we're still * running, and download directories so we can detect if we're obsolete. * Leave control conns because we still want to be controllable. */ while ((conn = connection_get_by_type(CONN_TYPE_OR)) || (conn = connection_get_by_type(CONN_TYPE_AP)) || (conn = connection_get_by_type(CONN_TYPE_EXIT))) { if (CONN_IS_EDGE(conn)) connection_edge_end(conn, END_STREAM_REASON_MISC, conn->cpath_layer); log_fn(LOG_INFO,"Closing conn type %d", conn->type); connection_mark_for_close(conn); } accounting_record_bandwidth_usage(now); } /** Called when hibernate_end_time has arrived. */ static void hibernate_end_time_elapsed(time_t now) { char buf[ISO_TIME_LEN+1]; /* The interval has ended, or it is wakeup time. Find out which. */ accounting_run_housekeeping(now); if (interval_wakeup_time <= now) { /* The interval hasn't changed, but interval_wakeup_time has passed. * It's time to wake up and start being a server. */ hibernate_end(HIBERNATE_STATE_LIVE); return; } else { /* The interval has changed, and it isn't time to wake up yet. */ hibernate_end_time = interval_wakeup_time; format_iso_time(buf,interval_wakeup_time); if (hibernate_state != HIBERNATE_STATE_DORMANT) { /* We weren't sleeping before; we should sleep now. */ log_fn(LOG_NOTICE, "Accounting period ended. Commencing hibernation until %s GMT",buf); hibernate_go_dormant(now); } else { log_fn(LOG_NOTICE, "Accounting period ended. This period, we will hibernate until %s GMT",buf); } } } /** Consider our environment and decide if it's time * to start/stop hibernating. */ void consider_hibernation(time_t now) { int accounting_enabled = get_options()->AccountingMax != 0; char buf[ISO_TIME_LEN+1]; /* If we're in 'exiting' mode, then we just shut down after the interval * elapses. */ if (hibernate_state == HIBERNATE_STATE_EXITING) { tor_assert(hibernate_end_time); if (hibernate_end_time <= now) { log(LOG_NOTICE,"Clean shutdown finished. Exiting."); tor_cleanup(); exit(0); } return; /* if exiting soon, don't worry about bandwidth limits */ } if (hibernate_state == HIBERNATE_STATE_DORMANT) { /* We've been hibernating because of bandwidth accounting. */ tor_assert(hibernate_end_time); if (hibernate_end_time > now && accounting_enabled) { /* If we're hibernating, don't wake up until it's time, regardless of * whether we're in a new interval. */ return ; } else { hibernate_end_time_elapsed(now); } } /* Else, we aren't hibernating. See if it's time to start hibernating, or to * go dormant. */ if (hibernate_state == HIBERNATE_STATE_LIVE) { if (hibernate_soft_limit_reached()) { log_fn(LOG_NOTICE,"Bandwidth soft limit reached; commencing hibernation."); hibernate_begin(HIBERNATE_STATE_LOWBANDWIDTH, now); } else if (accounting_enabled && now < interval_wakeup_time) { format_iso_time(buf,interval_wakeup_time); log_fn(LOG_NOTICE, "Commencing hibernation. We will wake up at %s GMT",buf); hibernate_go_dormant(now); } } if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) { if (!accounting_enabled) { hibernate_end_time_elapsed(now); } else if (hibernate_hard_limit_reached()) { hibernate_go_dormant(now); } else if (hibernate_end_time <= now) { /* The hibernation period ended while we were still in lowbandwidth.*/ hibernate_end_time_elapsed(now); } } }