/* Async DNS Library * Adam Langley * http://www.imperialviolet.org/eventdns.html * Public Domain codenext * * This software is Public Domain. To view a copy of the public domain dedication, * visit http://creativecommons.org/licenses/publicdomain/ or send a letter to * Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. * * I ask and expect, but do not require, that all derivative works contain an * attribution similar to: * Parts developed by Adam Langley * * You may wish to replace the word "Parts" with something else depending on * the amount of original code. * * (Derivative works does not include programs which link against, run or include * the source verbatim in their source distributions) * * Version: 0.1b * * * Welcome, gentle reader * * Async DNS lookups are really a whole lot harder than they should be, * mostly stemming from the fact that the libc resolver has never been * very good at them. Before you use this library you should see if libc * can do the job for you with the modern async call getaddrinfo_r * (Google for it). Otherwise, please continue. * * This code is based on libevent and you must call event_init before * any of the APIs in this file. You must also seed the OpenSSL random * source if you are using OpenSSL for ids (see below). * * This library is designed to be included and shipped with your source * code. You statically link with it. You should also test for the * existence of strtok_r and define HAVE_STRTOK_R if you have it. * * The DNS protocol requires a good source of id numbers and these * numbers should be unpredictable for spoofing reasons. There are * three methods for generating them here and you must define exactly * one of them. In increasing order of preference: * * DNS_USE_GETTIMEOFDAY_FOR_ID: * Using the bottom 16 bits of the usec result from gettimeofday. This * is a pretty poor solution but should work anywhere. * DNS_USE_CPU_CLOCK_FOR_ID: * Using the bottom 16 bits of the nsec result from the CPU's time * counter. This is better, but may not work everywhere. Requires * POSIX realtime support and you'll need to link against -lrt on * glibc systems at least. * DNS_USE_OPENSSL_FOR_ID: * Uses the OpenSSL RAND_bytes call to generate the data. You must * have seeded the pool before making any calls to this library. * * The library keeps track of the state of nameservers and will avoid * them when they go down. Otherwise it will round robin between them. * * Quick start guide: * #include "eventdns.h" * void callback(int result, char type, int count, int ttl, * void *addresses, void *arg); * eventdns_resolv_conf_parse(DNS_OPTIONS_ALL, "/etc/resolv.conf"); * eventdns_resolve("www.hostname.com", 0, callback, NULL); * * When the lookup is complete the callback function is called. The * first argument will be one of the DNS_ERR_* defines in eventdns.h. * Hopefully it will be DNS_ERR_NONE, in which case type will be * DNS_IPv4_A, count will be the number of IP addresses, ttl is the time * which the data can be cached for (in seconds), addresses will point * to an array of uint32_t's and arg will be whatever you passed to * eventdns_resolve. * * Searching: * * In order for this library to be a good replacment for glibc's resolver it * supports searching. This involves setting a list of default domains, in * which names will be queried for. The number of nots in the query name * determines the order in which this list is used. * * Searching appears to be a single lookup from the point of view of the API, * although many DNS queries may be generated from a single call to * eventdns_resolve. Searching can also drastically slow down the resolution of * names. * * To disable searching: * 1. Never set it up. If you never call eventdns_resolv_conf_parse or * eventdns_search_add then no searching will occur. * * 2. If you do call eventdns_resolv_conf_parse then don't pass * DNS_OPTION_SEARCH (or DNS_OPTIONS_ALL, which implies it) * * 3. When calling eventdns_resolve, pass the DNS_QUERY_NO_SEARCH flag * * The order of searches depends on the number of dots in the name. If the * number is greater than the ndots setting then the names is first tried * globally. Otherwise each search domain is appended in turn. * * The ndots setting can either be set from a resolv.conf, or by calling * eventdns_search_ndots_set. * * For example, with ndots set to 1 (the default) and a search domain list of * ["myhome.net"]: * Query: www * Order: www.myhome.net, www. * * Query: www.abc * Order: www.abc., www.abc.myhome.net * * API reference: * * int eventdns_nameserver_add(unsigned long int addresss) * Add a nameserver. The address should be an IP address in * network byte order. The type of address is chosen so that * it match in_addr.s_addr. * Returns non-zero on error. * * int eventdns_nameserer_ip_add(const char *ip_as_string) * This wraps the above function by parsing a string as an IP * address and add it as a nameserver. * Returns non-zero on error * * int eventdns_resolve(const char *name, int flags, * eventdns_callback_type callback, * void *ptr) * Resolve a name. The name parameter should be a DNS name. * The flags parameter should be 0, or DNS_QUERY_NO_SEARCH * which disables searching for this query. (see defn of * searching above). * * The callback argument is a function which is called when * this query completes and ptr is an argument which is passed * to that callback function. * * Returns non-zero on error * * void eventdns_search_clear() * Clears the list of search domains * * void eventdns_search_add(const char *domain) * Add a domain to the list of search domains * * void eventdns_search_ndots_set(int ndots) * Set the number of dots which, when found in a name, causes * the first query to be without any search domain. * * int eventdns_resolv_conf_parse(int flags, const char *filename) * Parse a resolv.conf like file from the given filename. * * See the manpage for resolv.conf for the format of this file. * The flags argument determines what information is parsed from * this file: * DNS_OPTION_SEARCH - domain, search and ndots options * DNS_OPTION_NAMESERVERS - nameserver lines * DNS_OPTION_MISC - timeout and attempts options * DNS_OPTIONS_ALL - all of the above * The following directives are not parsed from the file: * sortlist, rotate, no-check-names, inet6, debug * * Returns non-zero on error: * 0 no errors * 1 failed to open file * 2 failed to stat file * 3 file too large * 4 out of memory * 5 short read from file * * Internals: * * Requests are kept in two queues. The first is the inflight queue. In * this queue requests have an allocated transaction id and nameserver. * They will soon be transmitted if they haven't already been. * * The second is the waiting queue. The size of the inflight ring is * limited and all other requests wait in waiting queue for space. This * bounds the number of concurrent requests so that we don't flood the * nameserver. Several algorithms require a full walk of the inflight * queue and so bounding its size keeps thing going nicly under huge * (many thousands of requests) loads. * * If a nameserver looses too many requests it is considered down and we * try not to use it. After a while we send a probe to that nameserver * (a lookup for google.com) and, if it replies, we consider it working * again. If the nameserver fails a probe we wait longer to try again * with the next probe. */ #include "eventdns.h" #include "eventdns_tor.h" //#define NDEBUG #ifndef DNS_USE_CPU_CLOCK_FOR_ID #ifndef DNS_USE_GETTIMEOFDAY_FOR_ID #ifndef DNS_USE_OPENSSL_FOR_ID #error Must configure at least one id generation method. #error Please see the documentation #endif #endif #endif // #define _POSIX_C_SOURCE 200507 #define _GNU_SOURCE #ifdef DNS_USE_CPU_CLOCK_FOR_ID #ifdef DNS_USE_OPENSSL_FOR_ID #error Multiple id options selected #endif #ifdef DNS_USE_GETTIMEOFDAY_FOR_ID #error Multiple id options selected #endif #include #endif #ifdef DNS_USE_OPENSSL_FOR_ID #ifdef DNS_USE_GETTIMEOFDAY_FOR_ID #error Multiple id options selected #endif #include #endif #define _FORTIFY_SOURCE 3 #include #include #include #include #include #include #include #include #include #ifdef HAVE_ALLOCA_H #include #endif #include #include #include #include #include #include #ifndef HOST_NAME_MAX #define HOST_NAME_MAX 255 #endif #ifndef NDEBUG #include #endif #undef MIN #define MIN(a,b) ((a)<(b)?(a):(b)) #ifdef __USE_ISOC99B // libevent doesn't work without this typedef uint8_t u_char; typedef unsigned int uint; #endif #include #define u64 uint64_t #define u32 uint32_t #define u16 uint16_t #define u8 uint8_t #ifndef NDEBUG #include #define log printf #else #define log(x,...) #endif #include "eventdns.h" #define MAX_ADDRS 4 // maximum number of addresses from a single packet // which we bother recording #define TYPE_A 1 #define CLASS_INET 1 struct request { u8 *request; // the dns packet data uint request_len; int reissue_count; int tx_count; // the number of times that this packet has been sent void *user_pointer; // the pointer given to us for this request eventdns_callback_type user_callback; struct nameserver *ns; // the server which we last sent it // elements used by the searching code int search_index; struct search_state *search_state; char *search_origname; // needs to be free()ed int search_flags; // these objects are kept in a circular list struct request *next, *prev; struct event timeout_event; u16 trans_id; // the transaction id char request_appended; // true if the request pointer is data which follows this struct char transmit_me; // needs to be transmitted }; struct nameserver { int socket; // a connected UDP socket u32 address; int failed_times; // number of times which we have given this server a chance int timedout; // number of times in a row a request has timed out struct event event; // these objects are kept in a circular list struct nameserver *next, *prev; struct event timeout_event; // used to keep the timeout for // when we next probe this server. // Valid if state == 0 char state; // zero if we think that this server is down char choaked; // true if we have an EAGAIN from this server's socket char write_waiting; // true if we are waiting for EV_WRITE events }; static struct request *req_head = NULL, *req_waiting_head = NULL; static struct nameserver *server_head = NULL; // The number of good nameservers that we have static int global_good_nameservers = 0; // inflight requests are contained in the req_head list // and are actually going out across the network static int global_requests_inflight = 0; // requests which aren't inflight are in the waiting list // and are counted here static int global_requests_waiting = 0; static int global_max_requests_inflight = 64; static struct timeval global_timeout = {3, 0}; // 3 seconds static int global_max_reissues = 1; // a reissue occurs when we get some errors from the server static int global_max_retransmits = 3; // number of times we'll retransmit a request which timed out // number of timeouts in a row before we consider this server to be down static int global_max_nameserver_timeout = 3; // These are the timeout values for nameservers. If we find a nameserver is down // we try to probe it at intervals as given below. Values are in seconds. static const struct timeval global_nameserver_timeouts[] = {{10, 0}, {60, 0}, {300, 0}, {900, 0}, {3600, 0}}; static const int global_nameserver_timeouts_length = sizeof(global_nameserver_timeouts)/sizeof(struct timeval); const char *const eventdns_error_strings[] = {"no error", "The name server was unable to interpret the query", "The name server suffered an internal error", "The requested domain name does not exist", "The name server refused to reply to the request"}; static struct nameserver *nameserver_pick(void); static void eventdns_request_insert(struct request *req, struct request **head); static void nameserver_ready_callback(int fd, short events, void *arg); static int eventdns_transmit(void); static int eventdns_request_transmit(struct request *req); static void nameserver_send_probe(struct nameserver *const ns); static void search_request_finished(struct request *const); static int search_try_next(struct request *const req); static int search_request_new(const char *const name, int flags, eventdns_callback_type user_callback, void *user_arg); static void eventdns_requests_pump_waiting_queue(void); static u16 transaction_id_pick(void); static struct request *request_new(const char *name, int flags, eventdns_callback_type callback, void *ptr); static void request_submit(struct request *req); #ifdef MS_WINDOWS static int last_error(int sock) { int optval, optvallen=sizeof(optval); int err = WSAGetLastError(); if (err == WSAEWOULDBLOCK && sock >= 0) { if (getsockopt(sock, SOL_SOCKET, SO_ERROR, (void*)&optval, &optvallen)) return err; if (optval) return optval; } return err; } static int error_is_eagain(int sock) { int err = last_error(sock); return err == EAGAIN || err == WSAEWOULDBLOCK; } #else #define last_error(sock) (errno) #define error_is_eagain(sock) (errno == EAGAIN) #endif #ifndef NDEBUG static const char * debug_ntoa(u32 address) { static char buf[32]; u32 a = ntohl(address); sprintf(buf, "%d.%d.%d.%d", (int)(u8)((a>>24)&0xff), (int)(u8)((a>>16)&0xff), (int)(u8)((a>>8 )&0xff), (int)(u8)((a )&0xff)); return buf; } #endif // This walks the list of inflight requests to find the // one with a matching transaction id. Returns NULL on // failure static struct request * request_find_from_trans_id(u16 trans_id) { struct request *req = req_head, *const started_at = req_head; if (req) { do { if (req->trans_id == trans_id) return req; req = req->next; } while (req != started_at); } return NULL; } // a libevent callback function which is called when a nameserver // has gone down and we want to test if it has came back to life yet static void nameserver_prod_callback(int fd, short events, void *arg) { struct nameserver *const ns = (struct nameserver *) arg; nameserver_send_probe(ns); } // a libevent callback which is called when a nameserver probe (to see if // it has come back to life) times out. We increment the count of failed_times // and wait longer to send the next probe packet. static void nameserver_probe_failed(struct nameserver *const ns) { const struct timeval * timeout; assert(ns->state == 0); evtimer_del(&ns->timeout_event); timeout = &global_nameserver_timeouts[MIN(ns->failed_times, global_nameserver_timeouts_length - 1)]; ns->failed_times++; evtimer_set(&ns->timeout_event, nameserver_prod_callback, ns); evtimer_add(&ns->timeout_event, (struct timeval *) timeout); } // called when a nameserver has been deemed to have failed. For example, too // many packets have timed out etc static void nameserver_failed(struct nameserver *const ns) { struct request *req, *started_at; // if this nameserver has already been marked as failed // then don't do anything if (!ns->state) return; log("Nameserver %s has failed\n", debug_ntoa(ns->address)); global_good_nameservers--; assert(global_good_nameservers >= 0); if (global_good_nameservers == 0) { log("All nameservers have failed\n"); } ns->state = 0; ns->failed_times = 1; evtimer_set(&ns->timeout_event, nameserver_prod_callback, ns); evtimer_add(&ns->timeout_event, (struct timeval *) &global_nameserver_timeouts[0]); // walk the list of inflight requests to see if any can be reassigned to // a different server. Requests in the waiting queue don't have a // nameserver assigned yet // if we don't have *any* good nameservers then there's no point // trying to reassign requests to one if (!global_good_nameservers) return; req = req_head; started_at = req_head; if (req) { do { if (req->tx_count == 0 && req->ns == ns) { // still waiting to go out, can be moved // to another server req->ns = nameserver_pick(); } req = req->next; } while (req != started_at); } } static void nameserver_up(struct nameserver *const ns) { if (ns->state) return; log("Nameserver %s is back up\n", debug_ntoa(ns->address)); evtimer_del(&ns->timeout_event); ns->state = 1; ns->failed_times = 0; global_good_nameservers++; } static void request_trans_id_set(struct request *const req, const u16 trans_id) { req->trans_id = trans_id; *((u16 *) req->request) = htons(trans_id); } // Called to remove a request from a list and dealloc it. // head is a pointer to the head of the list it should be // removed from or NULL if the request isn't in a list. static void request_finished(struct request *const req, struct request **head) { if (head) { if (req->next == req) { // only item in the list *head = NULL; } else { req->next->prev = req->prev; req->prev->next = req->next; if (*head == req) *head = req->next; } } log("Removing timeout for %lx\n", (unsigned long) req); evtimer_del(&req->timeout_event); search_request_finished(req); global_requests_inflight--; if (!req->request_appended) { // need to free the request data on it's own free(req->request); } else { // the request data is appended onto the header // so everything gets free()ed when we: } free(req); eventdns_requests_pump_waiting_queue(); } // This is called when a server returns a funny error code. // We try the request again with another server. // // return: // 0 ok // 1 failed/reissue is pointless static int request_reissue(struct request *req) { const struct nameserver *const last_ns = req->ns; // the last nameserver should have been marked as failing // by the caller of this function, therefore pick will try // not to return it req->ns = nameserver_pick(); if (req->ns == last_ns) { // ... but pick did return it // not a lot of point in trying again with the // same server return 1; } req->reissue_count++; req->tx_count = 0; req->transmit_me = 1; return 0; } // this function looks for space on the inflight queue and promotes // requests from the waiting queue if it can. static void eventdns_requests_pump_waiting_queue(void) { while (global_requests_inflight < global_max_requests_inflight && global_requests_waiting) { struct request *req; // move a request from the waiting queue to the inflight queue assert(req_waiting_head); if (req_waiting_head->next == req_waiting_head) { // only one item in the queue req = req_waiting_head; req_waiting_head = NULL; } else { req = req_waiting_head; req->next->prev = req->prev; req->prev->next = req->next; req_waiting_head = req->next; } global_requests_waiting--; global_requests_inflight++; req->ns = nameserver_pick(); request_trans_id_set(req, transaction_id_pick()); eventdns_request_insert(req, &req_head); eventdns_request_transmit(req); eventdns_transmit(); } } // this processes a parsed reply packet static void reply_handle(u16 trans_id, u16 flags, u32 ttl, u32 addrcount, u32 *addresses) { int error; static const int error_codes[] = {DNS_ERR_FORMAT, DNS_ERR_SERVERFAILED, DNS_ERR_NOTEXIST, DNS_ERR_NOTIMPL, DNS_ERR_REFUSED}; struct request *const req = request_find_from_trans_id(trans_id); if (!req) return; if (flags & 0x020f || !addrcount) { // there was an error if (flags & 0x0200) { error = DNS_ERR_TRUNCATED; } else { u16 error_code = (flags & 0x000f) - 1; if (error_code > 4) { error = DNS_ERR_UNKNOWN; } else { error = error_codes[error_code]; } } switch(error) { case DNS_ERR_SERVERFAILED: case DNS_ERR_NOTIMPL: case DNS_ERR_REFUSED: // we regard these errors as marking a bad nameserver if (req->reissue_count < global_max_reissues) { nameserver_failed(req->ns); if (!request_reissue(req)) return; } break; default: // we got a good reply from the nameserver nameserver_up(req->ns); } if (req->search_state) { // if we have a list of domains to search in, try the next one if (!search_try_next(req)) { // a new request was issued so this request is finished and // the user callback will be made when that request (or a // child of it) finishes. request_finished(req, &req_head); return; } } // all else failed. Pass the failure up req->user_callback(error, 0, 0, 0, NULL, req->user_pointer); request_finished(req, &req_head); } else { // all ok, tell the user req->user_callback(DNS_ERR_NONE, DNS_IPv4_A, addrcount, ttl, addresses, req->user_pointer); nameserver_up(req->ns); request_finished(req, &req_head); } } // parses a raw packet from the wire static void reply_parse(u8 *packet, int length) { int j = 0; // index into packet u16 _t; // used by the macros u32 _t32; // used by the macros #define GET32(x) do { if (j + 4 > length) return; memcpy(&_t32, packet + j, 4); j += 4; x = ntohl(_t32); } while(0); #define GET16(x) do { if (j + 2 > length) return; memcpy(&_t, packet + j, 2); j += 2; x = ntohs(_t); } while(0); #define GET8(x) do { if (j >= length) return; x = packet[j++]; } while(0); u16 trans_id, flags, questions, answers, authority, additional, datalength; u32 ttl, ttl_r = 0xffffffff; u32 addresses[MAX_ADDRS]; int addresses_done = 0; uint i; GET16(trans_id); GET16(flags); GET16(questions); GET16(answers); GET16(authority); GET16(additional); if (!(flags & 0x8000)) return; // must be an answer if (flags & 0x020f) { // there was an error reply_handle(trans_id, flags, 0, 0, NULL); return; } // if (!answers) return; // must have an answer of some form // This macro skips a name in the DNS reply. Normally the // names are a series of length prefixed strings terminated with // a length of 0 (the lengths are u8's < 63). // However, the length can start with a pair of 1 bits and that // means that the next 14 bits are a pointer within the current // packet. The name stops after a pointer like that. #define SKIP_NAME \ for(;;) { \ u8 label_len; \ GET8(label_len); \ if (!label_len) break; \ if (label_len & 0xc0) { \ GET8(label_len); \ break; \ } \ if (label_len > 63) return; \ j += label_len; \ } // skip over each question in the reply for (i = 0; i < questions; ++i) { // the question looks like // SKIP_NAME; j += 4; } // now we have the answer section which looks like // for (i = 0; i < answers; ++i) { u16 type, class; SKIP_NAME; GET16(type); GET16(class); GET32(ttl); GET16(datalength); if (type == TYPE_A && class == CLASS_INET) { const int addrcount = datalength >> 2; // each IP address is 4 bytes const int addrtocopy = MIN(MAX_ADDRS - addresses_done, addrcount); ttl_r = MIN(ttl_r, ttl); // we only bother with the first four addresses. if (j + 4*addrtocopy > length) return; memcpy(&addresses[addresses_done], packet + j, 4*addrtocopy); j += 4*addrtocopy; addresses_done += addrtocopy; if (addresses_done == MAX_ADDRS) break; } else { // skip over any other type of resource j += datalength; } } reply_handle(trans_id, flags, ttl_r, addresses_done, addresses); #undef SKIP_NAME #undef GET32 #undef GET16 #undef GET8 } // Try to choose a strong transaction id which isn't already in flight static u16 transaction_id_pick(void) { for (;;) { const struct request *req = req_head, *started_at; #ifdef DNS_USE_CPU_CLOCK_FOR_ID struct timespec ts; const u16 trans_id = ts.tv_nsec & 0xffff; if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts)) abort(); #endif #ifdef DNS_USE_GETTIMEOFDAY_FOR_ID struct timeval tv; const u16 trans_id = tv.tv_usec & 0xffff; gettimeofday(&tv, NULL); #endif #ifdef DNS_USE_OPENSSL_FOR_ID u16 trans_id; if (RAND_pseudo_bytes((u8 *) &trans_id, 2) == -1) { /* // in the case that the RAND call fails we back // down to using gettimeofday. struct timeval tv; gettimeofday(&tv, NULL); trans_id = tv.tv_usec & 0xffff; */ abort(); } #endif if (trans_id == 0xffff) continue; // now check to see if that id is already inflight req = started_at = req_head; if (req) { do { if (req->trans_id == trans_id) break; req = req->next; } while (req != started_at); } // we didn't find it, so this is a good id if (req == started_at) return trans_id; } } // choose a namesever to use. This function will try to ignore // nameservers which we think are down and load balence across the rest // by updating the server_head global each time. static struct nameserver * nameserver_pick(void) { struct nameserver *started_at = server_head, *picked; if (!server_head) return NULL; // if we don't have any good nameservers then there's no // point in trying to find one. if (!global_good_nameservers) { server_head = server_head->next; return server_head; } // remember that nameservers are in a circular list for (;;) { if (server_head->state) { // we think this server is currently good picked = server_head; server_head = server_head->next; return picked; } server_head = server_head->next; if (server_head == started_at) { // all the nameservers seem to be down // so we just return this one and hope for the // best assert(global_good_nameservers == 0); picked = server_head; server_head = server_head->next; return picked; } } } // this is called when a namesever socket is ready for reading static void nameserver_read(struct nameserver *ns) { u8 packet[1500]; for (;;) { const int r = recv(ns->socket, packet, sizeof(packet), 0); if (r < 0) { if (error_is_eagain(ns->socket)) return; nameserver_failed(ns); return; } reply_parse(packet, r); } } // set if we are waiting for the ability to write to this server. // if waiting is true then we ask libevent for EV_WRITE events, otherwise // we stop these events. static void nameserver_write_waiting(struct nameserver *ns, char waiting) { if (ns->write_waiting == waiting) return; ns->write_waiting = waiting; event_del(&ns->event); event_set(&ns->event, ns->socket, EV_READ | (waiting ? EV_WRITE : 0) | EV_PERSIST, nameserver_ready_callback, ns); event_add(&ns->event, NULL); } // a callback function. Called by libevent when the kernel says that // a nameserver socket is ready for writing or reading static void nameserver_ready_callback(int fd, short events, void *arg) { struct nameserver *ns = (struct nameserver *) arg; if (events & EV_WRITE) { ns->choaked = 0; if (!eventdns_transmit()) { nameserver_write_waiting(ns, 0); } } if (events & EV_READ) { nameserver_read(ns); } } // Converts a string to a length-prefixed set of DNS labels. // @buf must be strlen(name)+2 or longer. name and buf must // not overlap. name_len should be the length of name // // Input: abc.def // Output: <3>abc<3>def<0> // // Returns the length of the data. negative on error // -1 label was > 63 bytes // -2 name was > 255 bytes static int dnsname_to_labels(u8 *const buf, const char *name, const int name_len) { \ const char *end = name + name_len; \ int j = 0; // current offset into buf if (name_len > 255) return -2; for (;;) { const char *const start = name; name = strchr(name, '.'); if (!name) { const uint label_len = end - start; if (label_len > 63) return -1; buf[j++] = label_len; memcpy(buf + j, start, end - start); j += end - start; break; } else { // append length of the label. const uint label_len = name - start; if (label_len > 63) return -1; buf[j++] = label_len; memcpy(buf + j, start, name - start); j += name - start; // hop over the '.' name++; } } // the labels must be terminated by a 0. // It's possible that the name ended in a . // in which case the zero is already there if (!j || buf[j-1]) buf[j++] = 0; return j; } // Finds the length of a dns request for a DNS name of the given // length. The actual request may be smaller than the value returned // here static int eventdns_request_len(const int name_len) { return 96 + // length of the DNS standard header name_len + 2 + 4; // space for the resource type } // build a dns request packet into buf. buf should be at least as long // as eventdns_request_len told you it should be. // // Returns the amount of space used. Negative on error. static int eventdns_request_data_build(const char *const name, const int name_len, const u16 trans_id, const u16 type, const u16 class, u8 *const buf) { int j = 0; // current offset into buf u16 _t; // used by the macros u8 *labels; int labels_len; #define APPEND16(x) do { _t = htons(x); memcpy(buf + j, &_t, 2); j += 2; } while(0); APPEND16(trans_id); APPEND16(0x0100); // standard query, recusion needed APPEND16(1); // one question APPEND16(0); // no answers APPEND16(0); // no authority APPEND16(0); // no additional labels = (u8 *) malloc(name_len + 2); labels_len = dnsname_to_labels(labels, name, name_len); if (labels_len < 0) return labels_len; memcpy(buf + j, labels, labels_len); j += labels_len; APPEND16(type); APPEND16(class); #undef APPEND16 return j; } // this is a libevent callback function which is called when a request // has timed out. static void eventdns_request_timeout_callback(int fd, short events, void *arg) { struct request *const req = (struct request *) arg; log("Request %lx timed out\n", (unsigned long) arg); req->ns->timedout++; if (req->ns->timedout > global_max_nameserver_timeout) { nameserver_failed(req->ns); } evtimer_del(&req->timeout_event); if (req->tx_count >= global_max_retransmits) { // this request has failed req->user_callback(DNS_ERR_TIMEOUT, 0, 0, 0, NULL, req->user_pointer); request_finished(req, &req_head); } else { // retransmit it eventdns_request_transmit(req); } } // try to send a request to a given server. // // return: // 0 ok // 1 temporary failure // 2 other failure static int eventdns_request_transmit_to(struct request *req, struct nameserver *server) { const int r = send(server->socket, req->request, req->request_len, 0); if (r < 0) { if (error_is_eagain(server->socket)) return 1; return 2; } else if (r != (int)req->request_len) { return 1; // short write } else { return 0; } } // try to send a request, updating the fields of the request // as needed // // return: // 0 ok // 1 failed static int eventdns_request_transmit(struct request *req) { int retcode = 0, r; // if we fail to send this packet then this flag marks it // for eventdns_transmit req->transmit_me = 1; if (req->trans_id == 0xffff) abort(); if (req->ns->choaked) { // don't bother trying to write to a socket // which we have had EAGAIN from return 1; } r = eventdns_request_transmit_to(req, req->ns); switch (r) { case 1: // temp failure req->ns->choaked = 1; nameserver_write_waiting(req->ns, 1); return 1; case 2: // failed in some other way nameserver_failed(req->ns); retcode = 1; // fall through default: // all ok log("Setting timeout for %lx\n", (unsigned long) req); evtimer_set(&req->timeout_event, eventdns_request_timeout_callback, req); evtimer_add(&req->timeout_event, &global_timeout); req->tx_count++; req->transmit_me = 0; return retcode; } } static void nameserver_probe_callback(int result, char type, int count, int ttl, void *addresses, void *arg) { struct nameserver *const ns = (struct nameserver *) arg; if (result == DNS_ERR_NONE || result == DNS_ERR_NOTEXIST) { // this is a good reply nameserver_up(ns); } else nameserver_probe_failed(ns); } static void nameserver_send_probe(struct nameserver *const ns) { struct request *req; // here we need to send a probe to a given nameserver // in the hope that it is up now. log("Sending probe to %s\n", debug_ntoa(ns->address)); req = request_new("www.google.com", DNS_QUERY_NO_SEARCH, nameserver_probe_callback, ns); // we force this into the inflight queue no matter what request_trans_id_set(req, transaction_id_pick()); req->ns = ns; request_submit(req); } // returns: // 0 didn't try to transmit anything // 1 tried to transmit something static int eventdns_transmit(void) { char did_try_to_transmit = 0; if (req_head) { struct request *const started_at = req_head, *req = req_head; // first transmit all the requests which are currently waiting do { if (req->transmit_me) { did_try_to_transmit = 1; eventdns_request_transmit(req); } req = req->next; } while (req != started_at); } return did_try_to_transmit; } // exported function int eventdns_nameserver_add(unsigned long int address) { // first check to see if we already have this nameserver const struct nameserver *server = server_head, *const started_at = server_head; struct nameserver *ns; struct sockaddr_in sin; int err = 0; if (server) { do { if (server->address == address) return 3; server = server->next; } while (server != started_at); } ns = (struct nameserver *) malloc(sizeof(struct nameserver)); memset(ns, 0, sizeof(struct nameserver)); ns->socket = socket(PF_INET, SOCK_DGRAM, 0); if (ns->socket < 0) { err = 1; goto out1; } #ifdef MS_WINDOWS { int nonblocking = 1; ioctlsocket(socket, FIONBIO, (unsigned long*) &nonblocking); } #else fcntl(ns->socket, F_SETFL, O_NONBLOCK); #endif sin.sin_addr.s_addr = address; sin.sin_port = htons(53); sin.sin_family = AF_INET; if (connect(ns->socket, (struct sockaddr *) &sin, sizeof(sin)) != 0) { err = 2; goto out2; } ns->address = address; ns->state = 1; event_set(&ns->event, ns->socket, EV_READ | EV_PERSIST, nameserver_ready_callback, ns); event_add(&ns->event, NULL); // insert this nameserver into the list of them if (!server_head) { ns->next = ns->prev = ns; server_head = ns; } else { ns->next = server_head->next; ns->prev = server_head; server_head->next = ns; if (server_head->prev == server_head) { server_head->prev = ns; } } global_good_nameservers++; return 0; out2: close(ns->socket); out1: free(ns); return err; } // exported function int eventdns_nameserver_ip_add(const char *ip_as_string) { struct in_addr ina; if (!inet_aton(ip_as_string, &ina)) return 4; return eventdns_nameserver_add(ina.s_addr); } // insert into the tail of the queue static void eventdns_request_insert(struct request *req, struct request **head) { if (!*head) { *head = req; req->next = req->prev = req; return; } req->prev = (*head)->prev; req->prev->next = req; req->next = *head; (*head)->prev = req; } static int string_num_dots(const char *s) { int count = 0; while ((s = strchr(s, '.'))) { s++; count++; } return count; } static struct request * request_new(const char *name, int flags, eventdns_callback_type callback, void *ptr) { const char issuing_now = (global_requests_inflight < global_max_requests_inflight) ? 1 : 0; const int name_len = strlen(name); const int request_max_len = eventdns_request_len(name_len); const u16 trans_id = issuing_now ? transaction_id_pick() : 0xffff; // the request data is alloced in a single block with the header struct request *const req = (struct request *) malloc(sizeof(struct request) + request_max_len); int rlen; memset(req, 0, sizeof(struct request)); // request data lives just after the header req->request = ((u8 *) req) + sizeof(struct request); req->request_appended = 1; // denotes that the request data shouldn't be free()ed rlen = eventdns_request_data_build(name, name_len, trans_id, TYPE_A, CLASS_INET, req->request); if (rlen < 0) goto err1; req->request_len = rlen; req->trans_id = trans_id; req->tx_count = 0; req->user_pointer = ptr; req->user_callback = callback; req->ns = issuing_now ? nameserver_pick() : NULL; req->next = req->prev = NULL; return req; err1: free(req->request); return NULL; } static void request_submit(struct request *const req) { if (req->ns) { // if it has a nameserver assigned then this is going // straight into the inflight queue eventdns_request_insert(req, &req_head); global_requests_inflight++; eventdns_request_transmit(req); } else { eventdns_request_insert(req, &req_waiting_head); global_requests_waiting++; } } // exported function int eventdns_resolve(const char *name, int flags, eventdns_callback_type callback, void *ptr) { log("resolve for %s\n", name); if (flags & DNS_QUERY_NO_SEARCH) { struct request *const req = request_new(name, flags, callback, ptr); if (!req) return 1; request_submit(req); return 0; } else { return search_request_new(name, flags, callback, ptr); } } ///////////////////////////////////////////////////////////////////// // Search support // // the libc resolver has support for searching a number of domains // to find a name. If nothing else then it takes the single domain // from the gethostname() call. // // It can also be configured via the domain and search options in a // resolv.conf. // // The ndots option controls how many dots it takes for the resolver // to decide that a name is non-local and so try a raw lookup first. struct search_domain { int len; struct search_domain *next; // the text string is appended to this structure }; struct search_state { int refcount; int ndots; int num_domains; struct search_domain *head; }; static struct search_state *global_search_state = NULL; static void search_state_decref(struct search_state *const state) { if (!state) return; state->refcount--; if (!state->refcount) { struct search_domain *next, *dom; for (dom = state->head; dom; dom = next) { next = dom->next; free(dom); } free(state); } }; static struct search_state * search_state_new(void) { struct search_state *state = (struct search_state *) malloc(sizeof(struct search_state)); memset(state, 0, sizeof(struct search_state)); state->refcount = 1; state->ndots = 1; return state; } static void search_postfix_clear(void) { search_state_decref(global_search_state); global_search_state = search_state_new(); } // exported function void eventdns_search_clear(void) { search_postfix_clear(); } static void search_postfix_add(const char *domain) { int domain_len; struct search_domain *sdomain; while (domain[0] == '.') domain++; domain_len = strlen(domain); if (!global_search_state) global_search_state = search_state_new(); global_search_state->num_domains++; sdomain = (struct search_domain *) malloc(sizeof(struct search_domain) + domain_len); memcpy( ((u8 *) sdomain) + sizeof(struct search_domain), domain, domain_len); sdomain->next = global_search_state->head; sdomain->len = domain_len; global_search_state->head = sdomain; } // reverse the order of members in the postfix list. This is needed because, // when parsing resolv.conf we push elements in the wrong order static void search_reverse(void) { struct search_domain *cur, *prev = NULL, *next; cur = global_search_state->head; while (cur) { next = cur->next; cur->next = prev; prev = cur; cur = next; } global_search_state->head = prev; } // exported function void eventdns_search_add(const char *domain) { search_postfix_add(domain); } // exported function void eventdns_search_ndots_set(const int ndots) { if (!global_search_state) global_search_state = search_state_new(); global_search_state->ndots = ndots; } static void search_set_from_hostname(void) { char hostname[HOST_NAME_MAX + 1], *domainname; search_postfix_clear(); if (gethostname(hostname, sizeof(hostname))) return; domainname = strchr(hostname, '.'); if (!domainname) return; search_postfix_add(domainname); } // warning: returns malloced string static char * search_make_new(const struct search_state *const state, int n, const char *const base_name) { const int base_len = strlen(base_name); const char need_to_append_dot = base_name[base_len - 1] == '.' ? 0 : 1; struct search_domain *dom; for (dom = state->head; dom; dom = dom->next) { if (!n--) { // this is the postfix we want // the actual postfix string is kept at the end of the structure const u8 *const postfix = ((u8 *) dom) + sizeof(struct search_domain); const int postfix_len = dom->len; char *const newname = (char *) malloc(base_len + need_to_append_dot + postfix_len + 1); memcpy(newname, base_name, base_len); if (need_to_append_dot) newname[base_len] = '.'; memcpy(newname + base_len + need_to_append_dot, postfix, postfix_len); newname[base_len + need_to_append_dot + postfix_len] = 0; return newname; } } // we ran off the end of the list and still didn't find the requested string abort(); } static int search_request_new(const char *const name, int flags, eventdns_callback_type user_callback, void *user_arg) { if ( ((flags & DNS_QUERY_NO_SEARCH) == 0) && global_search_state && global_search_state->num_domains) { // we have some domains to search struct request *req; if (string_num_dots(name) >= global_search_state->ndots) { req = request_new(name, flags, user_callback, user_arg); if (!req) return 1; req->search_index = -1; } else { char *const new_name = search_make_new(global_search_state, 0, name); req = request_new(new_name, flags, user_callback, user_arg); free(new_name); if (!req) return 1; req->search_index = 0; } req->search_origname = strdup(name); req->search_state = global_search_state; req->search_flags = flags; global_search_state->refcount++; request_submit(req); return 0; } else { struct request *const req = request_new(name, flags, user_callback, user_arg); if (!req) return 1; request_submit(req); return 0; } } // this is called when a request has failed to find a name. We need to check // if it is part of a search and, if so, try the next name in the list // returns: // 0 another request has been submitted // 1 no more requests needed static int search_try_next(struct request *const req) { if (req->search_state) { // it is part of a search char *new_name; struct request *newreq; req->search_index++; if (req->search_index >= req->search_state->num_domains) { // no more postfixes to try, however we may need to try // this name without a postfix if (string_num_dots(req->search_origname) < req->search_state->ndots) { // yep, we need to try it raw struct request *const newreq = request_new(req->search_origname, req->search_flags, req->user_callback, req->user_pointer); log("search: trying raw query %s\n", req->search_origname); if (newreq) { request_submit(newreq); return 0; } } return 1; } new_name = search_make_new(req->search_state, req->search_index, req->search_origname); log("search: now trying %s (%d)\n", new_name, req->search_index); newreq = request_new(new_name, req->search_flags, req->user_callback, req->user_pointer); free(new_name); if (!newreq) return 1; newreq->search_origname = req->search_origname; req->search_origname = NULL; newreq->search_state = req->search_state; newreq->search_flags = req->search_flags; newreq->search_index = req->search_index; newreq->search_state->refcount++; request_submit(newreq); return 0; } return 1; } static void search_request_finished(struct request *const req) { if (req->search_state) { search_state_decref(req->search_state); req->search_state = NULL; } if (req->search_origname) { free(req->search_origname); req->search_origname = NULL; } } ///////////////////////////////////////////////////////////////////// // Parsing resolv.conf files static void eventdns_resolv_set_defaults(int flags) { // if the file isn't found then we assume a local resolver if (flags & DNS_OPTION_SEARCH) search_set_from_hostname(); if (flags & DNS_OPTION_NAMESERVERS) eventdns_nameserver_ip_add("127.0.0.1"); } #ifndef HAVE_STRTOK_R static char * strtok_r(char *s, const char *delim, char **state) { return strtok(s, delim); } #endif // helper version of atoi which returns -1 on error static int strtoint(const char *const str) { char *endptr; const int r = strtol(str, &endptr, 10); if (*endptr) return -1; return r; } static void resolv_conf_parse_line(char *const start, int flags) { char *strtok_state; static const char *const delims = " \t"; #define NEXT_TOKEN strtok_r(NULL, delims, &strtok_state) char *const first_token = strtok_r(start, delims, &strtok_state); if (!first_token) return; if (!strcmp(first_token, "nameserver")) { const char *const nameserver = NEXT_TOKEN; struct in_addr ina; if (inet_aton(nameserver, &ina)) { // address is valid eventdns_nameserver_add(ina.s_addr); } } else if (!strcmp(first_token, "domain") && (flags & DNS_OPTION_SEARCH)) { const char *const domain = NEXT_TOKEN; if (domain) { search_postfix_clear(); search_postfix_add(domain); } } else if (!strcmp(first_token, "search") && (flags & DNS_OPTION_SEARCH)) { const char *domain; search_postfix_clear(); while ((domain = NEXT_TOKEN)) { search_postfix_add(domain); } search_reverse(); } else if (!strcmp(first_token, "options")) { const char *option; while ((option = NEXT_TOKEN)) { if (!strncmp(option, "ndots:", 6)) { const int ndots = strtoint(&option[6]); if (ndots == -1) continue; if (!(flags & DNS_OPTION_SEARCH)) continue; log("setting ndots to %d\n", ndots); if (!global_search_state) global_search_state = search_state_new(); global_search_state->ndots = ndots; } else if (!strncmp(option, "timeout:", 8)) { const int timeout = strtoint(&option[8]); if (timeout == -1) continue; if (!(flags & DNS_OPTION_MISC)) continue; log("setting timeout to %d\n", timeout); global_timeout.tv_sec = timeout; } else if (!strncmp(option, "attempts:", 9)) { const int retries = strtoint(&option[9]); if (retries == -1) continue; if (!(flags & DNS_OPTION_MISC)) continue; log("setting retries to %d\n", retries); global_max_retransmits = retries; } } } #undef NEXT_TOKEN } // exported function // returns: // 0 no errors // 1 failed to open file // 2 failed to stat file // 3 file too large // 4 out of memory // 5 short read from file int eventdns_resolv_conf_parse(int flags, const char *const filename) { struct stat st; int fd; u8 *resolv; char *start; int err = 0; log("parsing resolve file %s\n", filename); fd = open(filename, O_RDONLY); if (fd < 0) { eventdns_resolv_set_defaults(flags); return 0; } if (fstat(fd, &st)) { err = 2; goto out1; } if (!st.st_size) { eventdns_resolv_set_defaults(flags); err = 0; goto out1; } if (st.st_size > 65535) { err = 3; goto out1; } // no resolv.conf should be any bigger resolv = (u8 *) malloc(st.st_size + 1); if (!resolv) { err = 4; goto out1; } if (read(fd, resolv, st.st_size) != st.st_size) { err = 5; goto out2; } resolv[st.st_size] = 0; // we malloced an extra byte start = (char *) resolv; for (;;) { char *const newline = strchr(start, '\n'); if (!newline) { resolv_conf_parse_line(start, flags); break; } else { *newline = 0; resolv_conf_parse_line(start, flags); start = newline + 1; } } if (!server_head && (flags & DNS_OPTION_NAMESERVERS)) { // no nameservers were configured. eventdns_nameserver_ip_add("127.0.0.1"); } if (flags & DNS_OPTION_SEARCH && (!global_search_state || global_search_state->num_domains == 0)) { search_set_from_hostname(); } out2: free(resolv); out1: close(fd); return err; }