/* Copyright (c) 2001 Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2008, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /* $Id$ */ const char buffers_c_id[] = "$Id$"; /** * \file buffers.c * \brief Implements a generic buffer interface. Buffers are * fairly opaque string holders that can read to or flush from: * memory, file descriptors, or TLS connections. **/ #define BUFFERS_PRIVATE #include "or.h" //#define PARANOIA //#define NOINLINE #ifdef PARANOIA /** Helper: If PARANOIA is defined, assert that the buffer in local variable * buf is well-formed. */ #define check() STMT_BEGIN assert_buf_ok(buf); STMT_END #else #define check() STMT_NIL #endif #ifdef NOINLINE #undef INLINE #define INLINE #endif /* Implementation notes: * * After flirting with memmove, and dallying with ring-buffers, we're finally * getting up to speed with the 1970s and implementing buffers as a linked * list of small chunks. Each buffer has such a list; data is removed from * the head of the list, and added at the tail. The list is singly linked, * and the buffer keeps a pointer to the head and the tail. * * Every chunk, except the tail, contains at least one byte of data. Data in * each chunk is contiguous. * * When you need to treat the first N characters on a buffer as a contiguous * string, use the buf_pullup function to make them so. Don't do this more * than necessary. * * The major free Unix kernels have handled buffers like this since, like, * forever. */ /* Chunk manipulation functions */ /** A single chunk on a buffer or in a freelist. */ typedef struct chunk_t { struct chunk_t *next; /**< The next chunk on the buffer or freelist. */ size_t datalen; /**< The number of bytes stored in this chunk */ size_t memlen; /**< The number of usable bytes of storage in mem. */ char *data; /**< A pointer to the first byte of data stored in mem. */ char mem[1]; /**< The actual memory used for storage in this chunk. May be * more than one byte long. */ } chunk_t; /** Return the number of bytes needed to allocate a chunk to hold * memlen bytes. */ #define CHUNK_ALLOC_SIZE(memlen) (sizeof(chunk_t) + (memlen) - 1) /** Return the number of usable bytes in a chunk allocated with * malloc(memlen). */ #define CHUNK_SIZE_WITH_ALLOC(memlen) ((memlen) - sizeof(chunk_t) + 1) /** Return the next character in chunk onto which data can be appended. * If the chunk is full, this might be off the end of chunk->mem. */ static INLINE char * CHUNK_WRITE_PTR(chunk_t *chunk) { return chunk->data + chunk->datalen; } /** Return the number of bytes that can be written onto chunk without * running out of space. */ static INLINE size_t CHUNK_REMAINING_CAPACITY(const chunk_t *chunk) { return (chunk->mem + chunk->memlen) - (chunk->data + chunk->datalen); } /** Move all bytes stored in chunk to the front of chunk->mem, * to free up space at the end. */ static INLINE void chunk_repack(chunk_t *chunk) { if (chunk->datalen && chunk->data != &chunk->mem[0]) { memmove(chunk->mem, chunk->data, chunk->datalen); } chunk->data = &chunk->mem[0]; } #ifdef ENABLE_BUF_FREELISTS /** A freelist of chunks. */ typedef struct chunk_freelist_t { size_t alloc_size; /**< What size chunks does this freelist hold? */ int max_length; /**< Never allow more than this number of chunks in the * freelist. */ int slack; /**< When trimming the freelist, leave this number of extra * chunks beyond lowest_length.*/ int cur_length; /**< How many chunks on the freelist now? */ int lowest_length; /**< What's the smallest value of cur_length since the * last time we cleaned this freelist? */ uint64_t n_alloc; uint64_t n_free; uint64_t n_hit; chunk_t *head; /**< First chunk on the freelist. */ } chunk_freelist_t; /** Macro to help define freelists. */ #define FL(a,m,s) { a, m, s, 0, 0, 0, 0, 0, NULL } /** Static array of freelists, sorted by alloc_len, terminated by an entry * with alloc_size of 0. */ static chunk_freelist_t freelists[] = { FL(4096, 256, 8), FL(8192, 128, 4), FL(16384, 64, 4), FL(32768, 32, 2), FL(0, 0, 0) }; #undef FL /** How many times have we looked for a chunk of a size that no freelist * could help with? */ static uint64_t n_freelist_miss = 0; static void assert_freelist_ok(chunk_freelist_t *fl); /** Return the freelist to hold chunks of size alloc, or NULL if * no freelist exists for that size. */ static INLINE chunk_freelist_t * get_freelist(size_t alloc) { int i; for (i=0; freelists[i].alloc_size <= alloc; ++i) { if (freelists[i].alloc_size == alloc) { return &freelists[i]; } } return NULL; } /** Deallocate a chunk or put it on a freelist */ static void chunk_free(chunk_t *chunk) { size_t alloc = CHUNK_ALLOC_SIZE(chunk->memlen); chunk_freelist_t *freelist = get_freelist(alloc); if (freelist && freelist->cur_length < freelist->max_length) { chunk->next = freelist->head; freelist->head = chunk; ++freelist->cur_length; } else { if (freelist) ++freelist->n_free; tor_free(chunk); } } /** Allocate a new chunk with a given allocation size, or get one from the * freelist. Note that a chunk with allocation size A can actualy hold only * CHUNK_SIZE_WITH_ALLOC(A) bytes in its mem field. */ static INLINE chunk_t * chunk_new_with_alloc_size(size_t alloc) { chunk_t *ch; chunk_freelist_t *freelist; tor_assert(alloc >= sizeof(chunk_t)); freelist = get_freelist(alloc); if (freelist && freelist->head) { ch = freelist->head; freelist->head = ch->next; if (--freelist->cur_length < freelist->lowest_length) freelist->lowest_length = freelist->cur_length; ++freelist->n_hit; } else { /* XXXX021 take advantage of tor_malloc_roundup, once we know how that * affects freelists. */ if (freelist) ++freelist->n_alloc; else ++n_freelist_miss; ch = tor_malloc(alloc); } ch->next = NULL; ch->datalen = 0; ch->memlen = CHUNK_SIZE_WITH_ALLOC(alloc); ch->data = &ch->mem[0]; return ch; } #else static void chunk_free(chunk_t *chunk) { tor_free(chunk); } static INLINE chunk_t * chunk_new_with_alloc_size(size_t alloc) { chunk_t *ch; ch = tor_malloc_roundup(&alloc); ch->next = NULL; ch->datalen = 0; ch->memlen = CHUNK_SIZE_WITH_ALLOC(alloc); ch->data = &ch->mem[0]; return ch; } #endif /** Allocate a new chunk with memory size of sz. */ #define chunk_new_with_capacity(sz) \ (chunk_new_with_alloc_size(CHUNK_ALLOC_SIZE(sz))) /** Expand chunk until it can hold sz bytes, and return a * new pointer to chunk. Old pointers are no longer valid. */ static INLINE chunk_t * chunk_grow(chunk_t *chunk, size_t sz) { off_t offset; tor_assert(sz > chunk->memlen); offset = chunk->data - chunk->mem; chunk = tor_realloc(chunk, CHUNK_ALLOC_SIZE(sz)); chunk->memlen = sz; chunk->data = chunk->mem + offset; return chunk; } /** If a read onto the end of a chunk would be smaller than this number, then * just start a new chunk. */ #define MIN_READ_LEN 8 /** Every chunk should take up at least this many bytes. */ #define MIN_CHUNK_ALLOC 256 /** No chunk should take up more than this many bytes. */ #define MAX_CHUNK_ALLOC 65536 /** Return the allocation size we'd like to use to hold target * bytes. */ static INLINE size_t preferred_chunk_size(size_t target) { size_t sz = MIN_CHUNK_ALLOC; while (CHUNK_SIZE_WITH_ALLOC(sz) < target) { sz <<= 1; } return sz; } /** Remove from the freelists most chunks that have not been used since the * last call to buf_shrink_freelists(). */ void buf_shrink_freelists(int free_all) { #ifdef ENABLE_BUF_FREELISTS int i; for (i = 0; freelists[i].alloc_size; ++i) { int slack = freelists[i].slack; assert_freelist_ok(&freelists[i]); if (free_all || freelists[i].lowest_length > slack) { int n_to_free = free_all ? freelists[i].cur_length : (freelists[i].lowest_length - slack); int n_to_skip = freelists[i].cur_length - n_to_free; int new_length = n_to_skip; chunk_t **chp = &freelists[i].head; chunk_t *chunk; log_info(LD_MM, "Cleaning freelist for %d-byte chunks: keeping %d, " "dropping %d.", (int)freelists[i].alloc_size, n_to_skip, n_to_free); while (n_to_skip) { tor_assert((*chp)->next); chp = &(*chp)->next; --n_to_skip; } chunk = *chp; *chp = NULL; while (chunk) { chunk_t *next = chunk->next; tor_free(chunk); chunk = next; --n_to_free; ++freelists[i].n_free; } tor_assert(!n_to_free); freelists[i].cur_length = new_length; } freelists[i].lowest_length = freelists[i].cur_length; assert_freelist_ok(&freelists[i]); } #else (void) free_all; #endif } /** Describe the current status of the freelists at log level severity. */ void buf_dump_freelist_sizes(int severity) { #ifdef ENABLE_BUF_FREELISTS int i; log(severity, LD_MM, "====== Buffer freelists:"); for (i = 0; freelists[i].alloc_size; ++i) { uint64_t total = ((uint64_t)freelists[i].cur_length) * freelists[i].alloc_size; log(severity, LD_MM, U64_FORMAT" bytes in %d %d-byte chunks ["U64_FORMAT " misses; "U64_FORMAT" frees; "U64_FORMAT" hits]", U64_PRINTF_ARG(total), freelists[i].cur_length, (int)freelists[i].alloc_size, U64_PRINTF_ARG(freelists[i].n_alloc), U64_PRINTF_ARG(freelists[i].n_free), U64_PRINTF_ARG(freelists[i].n_hit)); } log(severity, LD_MM, U64_FORMAT" allocations in non-freelist sizes", U64_PRINTF_ARG(n_freelist_miss)); #else (void)severity; #endif } /** Magic value for buf_t.magic, to catch pointer errors. */ #define BUFFER_MAGIC 0xB0FFF312u /** A resizeable buffer, optimized for reading and writing. */ struct buf_t { uint32_t magic; /**< Magic cookie for debugging: Must be set to * BUFFER_MAGIC. */ size_t datalen; /**< How many bytes is this buffer holding right now? */ size_t default_chunk_size; /**< Don't allocate any chunks smaller than * this for this buffer. */ chunk_t *head; /**< First chunk in the list, or NULL for none. */ chunk_t *tail; /**< Last chunk in the list, or NULL for none. */ }; /** Collapse data from the first N chunks from buf into buf->head, * growing it as necessary, until buf->head has the first bytes bytes * of data from the buffer, or until buf->head has all the data in buf. * * If nulterminate is true, ensure that there is a 0 byte in * buf->head->mem right after all the data. */ static void buf_pullup(buf_t *buf, size_t bytes, int nulterminate) { chunk_t *dest, *src; size_t capacity; if (!buf->head) return; check(); if (buf->datalen < bytes) bytes = buf->datalen; if (nulterminate) { capacity = bytes + 1; if (buf->head->datalen >= bytes && CHUNK_REMAINING_CAPACITY(buf->head)) { *CHUNK_WRITE_PTR(buf->head) = '\0'; return; } } else { capacity = bytes; if (buf->head->datalen >= bytes) return; } if (buf->head->memlen >= capacity) { /* We don't need to grow the first chunk, but we might need to repack it.*/ if (CHUNK_REMAINING_CAPACITY(buf->head) < capacity-buf->datalen) chunk_repack(buf->head); tor_assert(CHUNK_REMAINING_CAPACITY(buf->head) >= capacity-buf->datalen); } else { chunk_t *newhead; size_t newsize; /* We need to grow the chunk. */ chunk_repack(buf->head); newsize = CHUNK_SIZE_WITH_ALLOC(preferred_chunk_size(capacity)); newhead = chunk_grow(buf->head, newsize); tor_assert(newhead->memlen >= capacity); if (newhead != buf->head) { if (buf->tail == buf->head) buf->tail = newhead; buf->head = newhead; } } dest = buf->head; while (dest->datalen < bytes) { size_t n = bytes - dest->datalen; src = dest->next; tor_assert(src); if (n > src->datalen) { memcpy(CHUNK_WRITE_PTR(dest), src->data, src->datalen); dest->datalen += src->datalen; dest->next = src->next; if (buf->tail == src) buf->tail = dest; chunk_free(src); } else { memcpy(CHUNK_WRITE_PTR(dest), src->data, n); dest->datalen += n; src->data += n; src->datalen -= n; tor_assert(dest->datalen == bytes); } } if (nulterminate) { tor_assert(CHUNK_REMAINING_CAPACITY(buf->head)); *CHUNK_WRITE_PTR(buf->head) = '\0'; } check(); } /** Resize buf so it won't hold extra memory that we haven't been * using lately. */ void buf_shrink(buf_t *buf) { (void)buf; } /** Remove the first n bytes from buf. */ static INLINE void buf_remove_from_front(buf_t *buf, size_t n) { tor_assert(buf->datalen >= n); while (n) { tor_assert(buf->head); if (buf->head->datalen > n) { buf->head->datalen -= n; buf->head->data += n; buf->datalen -= n; return; } else { chunk_t *victim = buf->head; n -= victim->datalen; buf->datalen -= victim->datalen; buf->head = victim->next; if (buf->tail == victim) buf->tail = NULL; chunk_free(victim); } } check(); } /** Create and return a new buf with default chunk capacity size. */ buf_t * buf_new_with_capacity(size_t size) { buf_t *b = buf_new(); b->default_chunk_size = preferred_chunk_size(size); return b; } /** Allocate and return a new buffer with default capacity. */ buf_t * buf_new(void) { buf_t *buf = tor_malloc_zero(sizeof(buf_t)); buf->magic = BUFFER_MAGIC; buf->default_chunk_size = 4096; return buf; } /** Remove all data from buf. */ void buf_clear(buf_t *buf) { chunk_t *chunk, *next; buf->datalen = 0; for (chunk = buf->head; chunk; chunk = next) { next = chunk->next; chunk_free(chunk); } buf->head = buf->tail = NULL; } /** Return the number of bytes stored in buf */ size_t buf_datalen(const buf_t *buf) { return buf->datalen; } /** Return the total length of all chunks used in buf. */ size_t buf_allocation(const buf_t *buf) { size_t total = 0; const chunk_t *chunk; for (chunk = buf->head; chunk; chunk = chunk->next) { total += chunk->memlen; } return total; } /** Return the number of bytes that can be added to buf without * performing any additional allocation. */ size_t buf_slack(const buf_t *buf) { if (!buf->tail) return 0; else return CHUNK_REMAINING_CAPACITY(buf->tail); } /** Release storage held by buf. */ void buf_free(buf_t *buf) { buf_clear(buf); buf->magic = 0xdeadbeef; tor_free(buf); } /** Append a new chunk with enough capacity to hold capacity bytes to * the tail of buf. If capped, don't allocate a chunk bigger * than MAX_CHUNK_ALLOC. */ static chunk_t * buf_add_chunk_with_capacity(buf_t *buf, size_t capacity, int capped) { chunk_t *chunk; if (CHUNK_ALLOC_SIZE(capacity) < buf->default_chunk_size) { chunk = chunk_new_with_alloc_size(buf->default_chunk_size); } else if (capped && CHUNK_ALLOC_SIZE(capacity) > MAX_CHUNK_ALLOC) { chunk = chunk_new_with_alloc_size(MAX_CHUNK_ALLOC); } else { chunk = chunk_new_with_alloc_size(preferred_chunk_size(capacity)); } if (buf->tail) { tor_assert(buf->head); buf->tail->next = chunk; buf->tail = chunk; } else { tor_assert(!buf->head); buf->head = buf->tail = chunk; } check(); return chunk; } /** Read up to at_most bytes from the socket fd into * chunk (which must be on buf). If we get an EOF, set * *reached_eof to 1. Return -1 on error, 0 on eof or blocking, * and the number of bytes read otherwise. */ static INLINE int read_to_chunk(buf_t *buf, chunk_t *chunk, int fd, size_t at_most, int *reached_eof) { ssize_t read_result; tor_assert(CHUNK_REMAINING_CAPACITY(chunk) >= at_most); read_result = tor_socket_recv(fd, CHUNK_WRITE_PTR(chunk), at_most, 0); if (read_result < 0) { int e = tor_socket_errno(fd); if (!ERRNO_IS_EAGAIN(e)) { /* it's a real error */ #ifdef MS_WINDOWS if (e == WSAENOBUFS) log_warn(LD_NET,"recv() failed: WSAENOBUFS. Not enough ram?"); #endif return -1; } return 0; /* would block. */ } else if (read_result == 0) { log_debug(LD_NET,"Encountered eof on fd %d", (int)fd); *reached_eof = 1; return 0; } else { /* actually got bytes. */ buf->datalen += read_result; chunk->datalen += read_result; log_debug(LD_NET,"Read %ld bytes. %d on inbuf.", (long)read_result, (int)buf->datalen); tor_assert(read_result < INT_MAX); return (int)read_result; } } /** As read_to_chunk(), but return (negative) error code on error, blocking, * or TLS, and the number of bytes read otherwise. */ static INLINE int read_to_chunk_tls(buf_t *buf, chunk_t *chunk, tor_tls_t *tls, size_t at_most) { int read_result; tor_assert(CHUNK_REMAINING_CAPACITY(chunk) >= at_most); read_result = tor_tls_read(tls, CHUNK_WRITE_PTR(chunk), at_most); if (read_result < 0) return read_result; buf->datalen += read_result; chunk->datalen += read_result; return read_result; } /** Read from socket s, writing onto end of buf. Read at most * at_most bytes, growing the buffer as necessary. If recv() returns 0 * (because of EOF), set *reached_eof to 1 and return 0. Return -1 on * error; else return the number of bytes read. */ /* XXXX021 indicate "read blocked" somehow? */ int read_to_buf(int s, size_t at_most, buf_t *buf, int *reached_eof) { /* XXXX021 It's stupid to overload the return values for these functions: * "error status" and "number of bytes read" are not mutually exclusive. */ int r = 0; size_t total_read = 0; check(); tor_assert(reached_eof); tor_assert(s >= 0); while (at_most > total_read) { size_t readlen = at_most - total_read; chunk_t *chunk; if (!buf->tail || CHUNK_REMAINING_CAPACITY(buf->tail) < MIN_READ_LEN) { chunk = buf_add_chunk_with_capacity(buf, at_most, 1); if (readlen > chunk->memlen) readlen = chunk->memlen; } else { size_t cap = CHUNK_REMAINING_CAPACITY(buf->tail); chunk = buf->tail; if (cap < readlen) readlen = cap; } r = read_to_chunk(buf, chunk, s, readlen, reached_eof); check(); if (r < 0) return r; /* Error */ tor_assert(total_read+r < INT_MAX); total_read += r; if ((size_t)r < readlen) { /* eof, block, or no more to read. */ break; } } return (int)total_read; } /** As read_to_buf, but reads from a TLS connection, and returns a TLS * status value rather than the number of bytes read. * * Using TLS on OR connections complicates matters in two ways. * * First, a TLS stream has its own read buffer independent of the * connection's read buffer. (TLS needs to read an entire frame from * the network before it can decrypt any data. Thus, trying to read 1 * byte from TLS can require that several KB be read from the network * and decrypted. The extra data is stored in TLS's decrypt buffer.) * Because the data hasn't been read by Tor (it's still inside the TLS), * this means that sometimes a connection "has stuff to read" even when * poll() didn't return POLLIN. The tor_tls_get_pending_bytes function is * used in connection.c to detect TLS objects with non-empty internal * buffers and read from them again. * * Second, the TLS stream's events do not correspond directly to network * events: sometimes, before a TLS stream can read, the network must be * ready to write -- or vice versa. */ int read_to_buf_tls(tor_tls_t *tls, size_t at_most, buf_t *buf) { int r = 0; size_t total_read = 0; check(); while (at_most > total_read) { size_t readlen = at_most - total_read; chunk_t *chunk; if (!buf->tail || CHUNK_REMAINING_CAPACITY(buf->tail) < MIN_READ_LEN) { chunk = buf_add_chunk_with_capacity(buf, at_most, 1); if (readlen > chunk->memlen) readlen = chunk->memlen; } else { size_t cap = CHUNK_REMAINING_CAPACITY(buf->tail); chunk = buf->tail; if (cap < readlen) readlen = cap; } r = read_to_chunk_tls(buf, chunk, tls, readlen); check(); if (r < 0) return r; /* Error */ tor_assert(total_read+r < INT_MAX); total_read += r; if ((size_t)r < readlen) /* eof, block, or no more to read. */ break; } return (int)total_read; } /** Helper for flush_buf(): try to write sz bytes from chunk * chunk of buffer buf onto socket s. On success, deduct * the bytes written from *buf_flushlen. Return the number of bytes * written on success, 0 on blocking, -1 on failure. */ static INLINE int flush_chunk(int s, buf_t *buf, chunk_t *chunk, size_t sz, size_t *buf_flushlen) { ssize_t write_result; tor_assert(sz <= chunk->datalen); write_result = tor_socket_send(s, chunk->data, sz, 0); if (write_result < 0) { int e = tor_socket_errno(s); if (!ERRNO_IS_EAGAIN(e)) { /* it's a real error */ #ifdef MS_WINDOWS if (e == WSAENOBUFS) log_warn(LD_NET,"write() failed: WSAENOBUFS. Not enough ram?"); #endif return -1; } log_debug(LD_NET,"write() would block, returning."); return 0; } else { *buf_flushlen -= write_result; buf_remove_from_front(buf, write_result); tor_assert(write_result < INT_MAX); return (int)write_result; } } /** Helper for flush_buf_tls(): try to write sz bytes from chunk * chunk of buffer buf onto socket s. (Tries to write * more if there is a forced pending write size.) On success, deduct the * bytes written from *buf_flushlen. Return the number of bytes * written on success, and a TOR_TLS error code on failue or blocking. */ static INLINE int flush_chunk_tls(tor_tls_t *tls, buf_t *buf, chunk_t *chunk, size_t sz, size_t *buf_flushlen) { int r; size_t forced; char *data; forced = tor_tls_get_forced_write_size(tls); if (forced > sz) sz = forced; if (chunk) { data = chunk->data; tor_assert(sz <= chunk->datalen); } else { data = NULL; tor_assert(sz == 0); } r = tor_tls_write(tls, data, sz); if (r < 0) return r; if (*buf_flushlen > (size_t)r) *buf_flushlen -= r; else *buf_flushlen = 0; buf_remove_from_front(buf, r); log_debug(LD_NET,"flushed %d bytes, %d ready to flush, %d remain.", r,(int)*buf_flushlen,(int)buf->datalen); return r; } /** Write data from buf to the socket s. Write at most * sz bytes, decrement *buf_flushlen by * the number of bytes actually written, and remove the written bytes * from the buffer. Return the number of bytes written on success, * -1 on failure. Return 0 if write() would block. */ int flush_buf(int s, buf_t *buf, size_t sz, size_t *buf_flushlen) { /* XXXX021 It's stupid to overload the return values for these functions: * "error status" and "number of bytes flushed" are not mutually exclusive. */ int r; size_t flushed = 0; tor_assert(buf_flushlen); tor_assert(s >= 0); tor_assert(*buf_flushlen <= buf->datalen); tor_assert(sz <= *buf_flushlen); check(); while (sz) { size_t flushlen0; tor_assert(buf->head); if (buf->head->datalen >= sz) flushlen0 = sz; else flushlen0 = buf->head->datalen; r = flush_chunk(s, buf, buf->head, flushlen0, buf_flushlen); check(); if (r < 0) return r; flushed += r; sz -= r; if (r == 0 || (size_t)r < flushlen0) /* can't flush any more now. */ break; } tor_assert(flushed < INT_MAX); return (int)flushed; } /** As flush_buf(), but writes data to a TLS connection. Can write more than * flushlen bytes. */ int flush_buf_tls(tor_tls_t *tls, buf_t *buf, size_t flushlen, size_t *buf_flushlen) { int r; size_t flushed = 0; ssize_t sz; tor_assert(buf_flushlen); tor_assert(*buf_flushlen <= buf->datalen); tor_assert(flushlen <= *buf_flushlen); sz = (ssize_t) flushlen; /* we want to let tls write even if flushlen is zero, because it might * have a partial record pending */ check_no_tls_errors(); check(); do { size_t flushlen0; if (buf->head) { if ((ssize_t)buf->head->datalen >= sz) flushlen0 = sz; else flushlen0 = buf->head->datalen; } else { flushlen0 = 0; } r = flush_chunk_tls(tls, buf, buf->head, flushlen0, buf_flushlen); check(); if (r < 0) return r; flushed += r; sz -= r; if (r == 0) /* Can't flush any more now. */ break; } while (sz > 0); tor_assert(flushed < INT_MAX); return (int)flushed; } /** Append string_len bytes from string to the end of * buf. * * Return the new length of the buffer on success, -1 on failure. */ int write_to_buf(const char *string, size_t string_len, buf_t *buf) { if (!string_len) return (int)buf->datalen; check(); while (string_len) { size_t copy; if (!buf->tail || !CHUNK_REMAINING_CAPACITY(buf->tail)) buf_add_chunk_with_capacity(buf, string_len, 1); copy = CHUNK_REMAINING_CAPACITY(buf->tail); if (copy > string_len) copy = string_len; memcpy(CHUNK_WRITE_PTR(buf->tail), string, copy); string_len -= copy; string += copy; buf->datalen += copy; buf->tail->datalen += copy; } check(); tor_assert(buf->datalen < INT_MAX); return (int)buf->datalen; } /** Helper: copy the first string_len bytes from buf * onto string. */ static INLINE void peek_from_buf(char *string, size_t string_len, const buf_t *buf) { chunk_t *chunk; tor_assert(string); /* make sure we don't ask for too much */ tor_assert(string_len <= buf->datalen); /* assert_buf_ok(buf); */ chunk = buf->head; while (string_len) { size_t copy = string_len; tor_assert(chunk); if (chunk->datalen < copy) copy = chunk->datalen; memcpy(string, chunk->data, copy); string_len -= copy; string += copy; chunk = chunk->next; } } /** Remove string_len bytes from the front of buf, and store * them into string. Return the new buffer size. string_len * must be \<= the number of bytes on the buffer. */ int fetch_from_buf(char *string, size_t string_len, buf_t *buf) { /* There must be string_len bytes in buf; write them onto string, * then memmove buf back (that is, remove them from buf). * * Return the number of bytes still on the buffer. */ check(); peek_from_buf(string, string_len, buf); buf_remove_from_front(buf, string_len); check(); tor_assert(buf->datalen < INT_MAX); return (int)buf->datalen; } /** Check buf for a variable-length cell according to the rules of link * protocol version linkproto. If one is found, pull it off the buffer * and assign a newly allocated var_cell_t to *out, and return 1. * Return 0 if whatever is on the start of buf_t is not a variable-length * cell. Return 1 and set *out to NULL if there seems to be the start * of a variable-length cell on buf, but the whole thing isn't there * yet. */ int fetch_var_cell_from_buf(buf_t *buf, var_cell_t **out, int linkproto) { char hdr[VAR_CELL_HEADER_SIZE]; var_cell_t *result; uint8_t command; uint16_t length; /* If linkproto is unknown (0) or v2 (2), variable-length cells work as * implemented here. If it's 1, there are no variable-length cells. Tor * does not support other versions right now, and so can't negotiate them. */ if (linkproto == 1) return 0; check(); *out = NULL; if (buf->datalen < VAR_CELL_HEADER_SIZE) return 0; peek_from_buf(hdr, sizeof(hdr), buf); command = *(uint8_t*)(hdr+2); if (!(CELL_COMMAND_IS_VAR_LENGTH(command))) return 0; length = ntohs(get_uint16(hdr+3)); if (buf->datalen < (size_t)(VAR_CELL_HEADER_SIZE+length)) return 1; result = var_cell_new(length); result->command = command; result->circ_id = ntohs(*(uint16_t*)hdr); buf_remove_from_front(buf, VAR_CELL_HEADER_SIZE); peek_from_buf(result->payload, length, buf); buf_remove_from_front(buf, length); check(); *out = result; return 1; } /** Move up to *buf_flushlen bytes from buf_in to * buf_out, and modify *buf_flushlen appropriately. * Return the number of bytes actually copied. */ int move_buf_to_buf(buf_t *buf_out, buf_t *buf_in, size_t *buf_flushlen) { /* XXXX we can do way better here, but this doesn't turn up in any * profiles. */ char b[4096]; size_t cp, len; len = *buf_flushlen; if (len > buf_in->datalen) len = buf_in->datalen; cp = len; /* Remember the number of bytes we intend to copy. */ tor_assert(cp < INT_MAX); while (len) { /* This isn't the most efficient implementation one could imagine, since * it does two copies instead of 1, but I kinda doubt that this will be * critical path. */ size_t n = len > sizeof(b) ? sizeof(b) : len; fetch_from_buf(b, n, buf_in); write_to_buf(b, n, buf_out); len -= n; } *buf_flushlen -= cp; return (int)cp; } /** Internal structure: represents a position in a buffer. */ typedef struct buf_pos_t { const chunk_t *chunk; /**< Which chunk are we pointing to? */ int pos;/**< Which character inside the chunk's data are we pointing to? */ size_t chunk_pos; /**< Total length of all previous chunks. */ } buf_pos_t; /** Initialize out to point to the first character of buf.*/ static void buf_pos_init(const buf_t *buf, buf_pos_t *out) { out->chunk = buf->head; out->pos = 0; out->chunk_pos = 0; } /** Advance out to the first appearance of ch at the current * position of out, or later. Return -1 if no instances are found; * otherwise returns the absolute position of the character. */ static off_t buf_find_pos_of_char(char ch, buf_pos_t *out) { const chunk_t *chunk; int pos; tor_assert(out); if (out->chunk) { if (out->chunk->datalen) { /*XXXX020 remove this once the bug it detects is fixed. */ if (!(out->pos < (off_t)out->chunk->datalen)) { log_warn(LD_BUG, "About to assert. %p, %d, %d, %p, %d.", out, (int)out->pos, (int)out->chunk_pos, out->chunk, out->chunk?(int)out->chunk->datalen : (int)-1 ); } tor_assert(out->pos < (off_t)out->chunk->datalen); } else { tor_assert(out->pos == 0); } } pos = out->pos; for (chunk = out->chunk; chunk; chunk = chunk->next) { char *cp = memchr(chunk->data+pos, ch, chunk->datalen - pos); if (cp) { out->chunk = chunk; tor_assert(cp - chunk->data < INT_MAX); out->pos = (int)(cp - chunk->data); return out->chunk_pos + out->pos; } else { out->chunk_pos += chunk->datalen; pos = 0; } } return -1; } /** Advance pos by a single character, if there are any more characters * in the buffer. Returns 0 on sucess, -1 on failure. */ static INLINE int buf_pos_inc(buf_pos_t *pos) { ++pos->pos; if (pos->pos == (off_t)pos->chunk->datalen) { if (!pos->chunk->next) return -1; pos->chunk_pos += pos->chunk->datalen; pos->chunk = pos->chunk->next; pos->pos = 0; } return 0; } /** Return true iff the n-character string in s appears * (verbatim) at pos. */ static int buf_matches_at_pos(const buf_pos_t *pos, const char *s, size_t n) { buf_pos_t p; if (!n) return 1; memcpy(&p, pos, sizeof(p)); while (1) { char ch = p.chunk->data[p.pos]; if (ch != *s) return 0; ++s; /* If we're out of characters that don't match, we match. Check this * _before_ we test incrementing pos, in case we're at the end of the * string. */ if (--n == 0) return 1; if (buf_pos_inc(&p)<0) return 0; } } /** Return the first position in buf at which the n-character * string s occurs, or -1 if it does not occur. */ /*private*/ int buf_find_string_offset(const buf_t *buf, const char *s, size_t n) { buf_pos_t pos; buf_pos_init(buf, &pos); while (buf_find_pos_of_char(*s, &pos) >= 0) { if (buf_matches_at_pos(&pos, s, n)) { tor_assert(pos.chunk_pos + pos.pos < INT_MAX); return (int)(pos.chunk_pos + pos.pos); } else { if (buf_pos_inc(&pos)<0) return -1; } } return -1; } /** There is a (possibly incomplete) http statement on buf, of the * form "\%s\\r\\n\\r\\n\%s", headers, body. (body may contain nuls.) * If a) the headers include a Content-Length field and all bytes in * the body are present, or b) there's no Content-Length field and * all headers are present, then: * * - strdup headers into *headers_out, and nul-terminate it. * - memdup body into *body_out, and nul-terminate it. * - Then remove them from buf, and return 1. * * - If headers or body is NULL, discard that part of the buf. * - If a headers or body doesn't fit in the arg, return -1. * (We ensure that the headers or body don't exceed max len, * _even if_ we're planning to discard them.) * - If force_complete is true, then succeed even if not all of the * content has arrived. * * Else, change nothing and return 0. */ int fetch_from_buf_http(buf_t *buf, char **headers_out, size_t max_headerlen, char **body_out, size_t *body_used, size_t max_bodylen, int force_complete) { char *headers, *p; size_t headerlen, bodylen, contentlen; int crlf_offset; check(); if (!buf->head) return 0; crlf_offset = buf_find_string_offset(buf, "\r\n\r\n", 4); if (crlf_offset > (int)max_headerlen || (crlf_offset < 0 && buf->datalen > max_headerlen)) { log_debug(LD_HTTP,"headers too long."); return -1; } else if (crlf_offset < 0) { log_debug(LD_HTTP,"headers not all here yet."); return 0; } /* Okay, we have a full header. Make sure it all appears in the first * chunk. */ if ((int)buf->head->datalen < crlf_offset + 4) buf_pullup(buf, crlf_offset+4, 0); headerlen = crlf_offset + 4; headers = buf->head->data; bodylen = buf->datalen - headerlen; log_debug(LD_HTTP,"headerlen %d, bodylen %d.", (int)headerlen, (int)bodylen); if (max_headerlen <= headerlen) { log_warn(LD_HTTP,"headerlen %d larger than %d. Failing.", (int)headerlen, (int)max_headerlen-1); return -1; } if (max_bodylen <= bodylen) { log_warn(LD_HTTP,"bodylen %d larger than %d. Failing.", (int)bodylen, (int)max_bodylen-1); return -1; } #define CONTENT_LENGTH "\r\nContent-Length: " p = (char*) tor_memstr(headers, headerlen, CONTENT_LENGTH); if (p) { int i; i = atoi(p+strlen(CONTENT_LENGTH)); if (i < 0) { log_warn(LD_PROTOCOL, "Content-Length is less than zero; it looks like " "someone is trying to crash us."); return -1; } contentlen = i; /* if content-length is malformed, then our body length is 0. fine. */ log_debug(LD_HTTP,"Got a contentlen of %d.",(int)contentlen); if (bodylen < contentlen) { if (!force_complete) { log_debug(LD_HTTP,"body not all here yet."); return 0; /* not all there yet */ } } if (bodylen > contentlen) { bodylen = contentlen; log_debug(LD_HTTP,"bodylen reduced to %d.",(int)bodylen); } } /* all happy. copy into the appropriate places, and return 1 */ if (headers_out) { *headers_out = tor_malloc(headerlen+1); fetch_from_buf(*headers_out, headerlen, buf); (*headers_out)[headerlen] = 0; /* nul terminate it */ } if (body_out) { tor_assert(body_used); *body_used = bodylen; *body_out = tor_malloc(bodylen+1); fetch_from_buf(*body_out, bodylen, buf); (*body_out)[bodylen] = 0; /* nul terminate it */ } check(); return 1; } /** There is a (possibly incomplete) socks handshake on buf, of one * of the forms * - socks4: "socksheader username\\0" * - socks4a: "socksheader username\\0 destaddr\\0" * - socks5 phase one: "version #methods methods" * - socks5 phase two: "version command 0 addresstype..." * If it's a complete and valid handshake, and destaddr fits in * MAX_SOCKS_ADDR_LEN bytes, then pull the handshake off the buf, * assign to req, and return 1. * * If it's invalid or too big, return -1. * * Else it's not all there yet, leave buf alone and return 0. * * If you want to specify the socks reply, write it into req->reply * and set req->replylen, else leave req->replylen alone. * * If log_sockstype is non-zero, then do a notice-level log of whether * the connection is possibly leaking DNS requests locally or not. * * If safe_socks is true, then reject unsafe socks protocols. * * If returning 0 or -1, req->address and req->port are * undefined. */ int fetch_from_buf_socks(buf_t *buf, socks_request_t *req, int log_sockstype, int safe_socks) { unsigned int len; char tmpbuf[INET_NTOA_BUF_LEN]; uint32_t destip; uint8_t socksver; enum {socks4, socks4a} socks4_prot = socks4a; char *next, *startaddr; struct in_addr in; /* If the user connects with socks4 or the wrong variant of socks5, * then log a warning to let him know that it might be unwise. */ static int have_warned_about_unsafe_socks = 0; if (buf->datalen < 2) /* version and another byte */ return 0; buf_pullup(buf, 128, 0); tor_assert(buf->head && buf->head->datalen >= 2); socksver = *buf->head->data; switch (socksver) { /* which version of socks? */ case 5: /* socks5 */ if (req->socks_version != 5) { /* we need to negotiate a method */ unsigned char nummethods = (unsigned char)*(buf->head->data+1); tor_assert(!req->socks_version); if (buf->datalen < 2u+nummethods) return 0; buf_pullup(buf, 2u+nummethods, 0); if (!nummethods || !memchr(buf->head->data+2, 0, nummethods)) { log_warn(LD_APP, "socks5: offered methods don't include 'no auth'. " "Rejecting."); req->replylen = 2; /* 2 bytes of response */ req->reply[0] = 5; req->reply[1] = '\xFF'; /* reject all methods */ return -1; } /* remove packet from buf. also remove any other extraneous * bytes, to support broken socks clients. */ buf_clear(buf); req->replylen = 2; /* 2 bytes of response */ req->reply[0] = 5; /* socks5 reply */ req->reply[1] = SOCKS5_SUCCEEDED; req->socks_version = 5; /* remember we've already negotiated auth */ log_debug(LD_APP,"socks5: accepted method 0"); return 0; } /* we know the method; read in the request */ log_debug(LD_APP,"socks5: checking request"); if (buf->datalen < 8) /* basic info plus >=2 for addr plus 2 for port */ return 0; /* not yet */ tor_assert(buf->head->datalen >= 8); req->command = (unsigned char) *(buf->head->data+1); if (req->command != SOCKS_COMMAND_CONNECT && req->command != SOCKS_COMMAND_RESOLVE && req->command != SOCKS_COMMAND_RESOLVE_PTR) { /* not a connect or resolve or a resolve_ptr? we don't support it. */ log_warn(LD_APP,"socks5: command %d not recognized. Rejecting.", req->command); return -1; } switch (*(buf->head->data+3)) { /* address type */ case 1: /* IPv4 address */ log_debug(LD_APP,"socks5: ipv4 address type"); if (buf->datalen < 10) /* ip/port there? */ return 0; /* not yet */ destip = ntohl(*(uint32_t*)(buf->head->data+4)); in.s_addr = htonl(destip); tor_inet_ntoa(&in,tmpbuf,sizeof(tmpbuf)); if (strlen(tmpbuf)+1 > MAX_SOCKS_ADDR_LEN) { log_warn(LD_APP, "socks5 IP takes %d bytes, which doesn't fit in %d. " "Rejecting.", (int)strlen(tmpbuf)+1,(int)MAX_SOCKS_ADDR_LEN); return -1; } strlcpy(req->address,tmpbuf,sizeof(req->address)); req->port = ntohs(*(uint16_t*)(buf->head->data+8)); buf_remove_from_front(buf, 10); if (req->command != SOCKS_COMMAND_RESOLVE_PTR && !addressmap_have_mapping(req->address) && !have_warned_about_unsafe_socks) { log_warn(LD_APP, "Your application (using socks5 to port %d) is giving " "Tor only an IP address. Applications that do DNS resolves " "themselves may leak information. Consider using Socks4A " "(e.g. via privoxy or socat) instead. For more information, " "please see http://wiki.noreply.org/noreply/TheOnionRouter/" "TorFAQ#SOCKSAndDNS.%s", req->port, safe_socks ? " Rejecting." : ""); // have_warned_about_unsafe_socks = 1; // (for now, warn every time) control_event_client_status(LOG_WARN, "DANGEROUS_SOCKS PROTOCOL=SOCKS5 ADDRESS=%s:%d", req->address, req->port); if (safe_socks) return -1; } return 1; case 3: /* fqdn */ log_debug(LD_APP,"socks5: fqdn address type"); if (req->command == SOCKS_COMMAND_RESOLVE_PTR) { log_warn(LD_APP, "socks5 received RESOLVE_PTR command with " "hostname type. Rejecting."); return -1; } len = (unsigned char)*(buf->head->data+4); if (buf->datalen < 7+len) /* addr/port there? */ return 0; /* not yet */ buf_pullup(buf, 7+len, 0); tor_assert(buf->head->datalen >= 7+len); if (len+1 > MAX_SOCKS_ADDR_LEN) { log_warn(LD_APP, "socks5 hostname is %d bytes, which doesn't fit in " "%d. Rejecting.", len+1,MAX_SOCKS_ADDR_LEN); return -1; } memcpy(req->address,buf->head->data+5,len); req->address[len] = 0; req->port = ntohs(get_uint16(buf->head->data+5+len)); buf_remove_from_front(buf, 5+len+2); if (!tor_strisprint(req->address) || strchr(req->address,'\"')) { log_warn(LD_PROTOCOL, "Your application (using socks5 to port %d) gave Tor " "a malformed hostname: %s. Rejecting the connection.", req->port, escaped(req->address)); return -1; } if (log_sockstype) log_notice(LD_APP, "Your application (using socks5 to port %d) gave " "Tor a hostname, which means Tor will do the DNS resolve " "for you. This is good.", req->port); return 1; default: /* unsupported */ log_warn(LD_APP,"socks5: unsupported address type %d. Rejecting.", (int) *(buf->head->data+3)); return -1; } tor_assert(0); case 4: /* socks4 */ /* http://archive.socks.permeo.com/protocol/socks4.protocol */ /* http://archive.socks.permeo.com/protocol/socks4a.protocol */ req->socks_version = 4; if (buf->datalen < SOCKS4_NETWORK_LEN) /* basic info available? */ return 0; /* not yet */ buf_pullup(buf, 1280, 0); req->command = (unsigned char) *(buf->head->data+1); if (req->command != SOCKS_COMMAND_CONNECT && req->command != SOCKS_COMMAND_RESOLVE) { /* not a connect or resolve? we don't support it. (No resolve_ptr with * socks4.) */ log_warn(LD_APP,"socks4: command %d not recognized. Rejecting.", req->command); return -1; } req->port = ntohs(*(uint16_t*)(buf->head->data+2)); destip = ntohl(*(uint32_t*)(buf->head->data+4)); if ((!req->port && req->command!=SOCKS_COMMAND_RESOLVE) || !destip) { log_warn(LD_APP,"socks4: Port or DestIP is zero. Rejecting."); return -1; } if (destip >> 8) { log_debug(LD_APP,"socks4: destip not in form 0.0.0.x."); in.s_addr = htonl(destip); tor_inet_ntoa(&in,tmpbuf,sizeof(tmpbuf)); if (strlen(tmpbuf)+1 > MAX_SOCKS_ADDR_LEN) { log_debug(LD_APP,"socks4 addr (%d bytes) too long. Rejecting.", (int)strlen(tmpbuf)); return -1; } log_debug(LD_APP, "socks4: successfully read destip (%s)", safe_str(tmpbuf)); socks4_prot = socks4; } next = memchr(buf->head->data+SOCKS4_NETWORK_LEN, 0, buf->head->datalen-SOCKS4_NETWORK_LEN); if (!next) { if (buf->head->datalen >= 1024) { log_debug(LD_APP, "Socks4 user name too long; rejecting."); return -1; } log_debug(LD_APP,"socks4: Username not here yet."); return 0; } tor_assert(next < CHUNK_WRITE_PTR(buf->head)); startaddr = NULL; if (socks4_prot != socks4a && !addressmap_have_mapping(tmpbuf) && !have_warned_about_unsafe_socks) { log_warn(LD_APP, "Your application (using socks4 to port %d) is giving Tor " "only an IP address. Applications that do DNS resolves " "themselves may leak information. Consider using Socks4A " "(e.g. via privoxy or socat) instead. For more information, " "please see http://wiki.noreply.org/noreply/TheOnionRouter/" "TorFAQ#SOCKSAndDNS.%s", req->port, safe_socks ? " Rejecting." : ""); // have_warned_about_unsafe_socks = 1; // (for now, warn every time) control_event_client_status(LOG_WARN, "DANGEROUS_SOCKS PROTOCOL=SOCKS4 ADDRESS=%s:%d", tmpbuf, req->port); if (safe_socks) return -1; } if (socks4_prot == socks4a) { if (next+1 == CHUNK_WRITE_PTR(buf->head)) { log_debug(LD_APP,"socks4: No part of destaddr here yet."); return 0; } startaddr = next+1; next = memchr(startaddr, 0, CHUNK_WRITE_PTR(buf->head)-startaddr); if (!next) { if (buf->head->datalen >= 1024) { log_debug(LD_APP,"socks4: Destaddr too long."); return -1; } log_debug(LD_APP,"socks4: Destaddr not all here yet."); return 0; } if (MAX_SOCKS_ADDR_LEN <= next-startaddr) { log_warn(LD_APP,"socks4: Destaddr too long. Rejecting."); return -1; } // tor_assert(next < buf->cur+buf->datalen); if (log_sockstype) log_notice(LD_APP, "Your application (using socks4a to port %d) gave " "Tor a hostname, which means Tor will do the DNS resolve " "for you. This is good.", req->port); } log_debug(LD_APP,"socks4: Everything is here. Success."); strlcpy(req->address, startaddr ? startaddr : tmpbuf, sizeof(req->address)); if (!tor_strisprint(req->address) || strchr(req->address,'\"')) { log_warn(LD_PROTOCOL, "Your application (using socks4 to port %d) gave Tor " "a malformed hostname: %s. Rejecting the connection.", req->port, escaped(req->address)); return -1; } /* next points to the final \0 on inbuf */ buf_remove_from_front(buf, next - buf->head->data + 1); return 1; case 'G': /* get */ case 'H': /* head */ case 'P': /* put/post */ case 'C': /* connect */ strlcpy(req->reply, "HTTP/1.0 501 Tor is not an HTTP Proxy\r\n" "Content-Type: text/html; charset=iso-8859-1\r\n\r\n" "\n" "
\n" "\n" "It appears you have configured your web browser to use Tor as an HTTP proxy." "\n" "This is not correct: Tor is a SOCKS proxy, not an HTTP proxy.\n" "Please configure your client accordingly.\n" "
\n" "\n" "See " "https://www.torproject.org/documentation.html for more " "information.\n" "\n" "
\n" "\n" "\n" , MAX_SOCKS_REPLY_LEN); req->replylen = strlen(req->reply)+1; /* fall through */ default: /* version is not socks4 or socks5 */ log_warn(LD_APP, "Socks version %d not recognized. (Tor is not an http proxy.)", *(buf->head->data)); { char *tmp = tor_strndup(buf->head->data, 8); /*XXXX what if longer?*/ control_event_client_status(LOG_WARN, "SOCKS_UNKNOWN_PROTOCOL DATA=\"%s\"", escaped(tmp)); tor_free(tmp); } return -1; } } /** Return 1 iff buf looks more like it has an (obsolete) v0 controller * command on it than any valid v1 controller command. */ int peek_buf_has_control0_command(buf_t *buf) { if (buf->datalen >= 4) { char header[4]; uint16_t cmd; peek_from_buf(header, sizeof(header), buf); cmd = ntohs(get_uint16(header+2)); if (cmd <= 0x14) return 1; /* This is definitely not a v1 control command. */ } return 0; } /** Return the index within buf at which ch first appears, * or -1 if ch does not appear on buf. */ static off_t buf_find_offset_of_char(buf_t *buf, char ch) { chunk_t *chunk; off_t offset = 0; for (chunk = buf->head; chunk; chunk = chunk->next) { char *cp = memchr(chunk->data, ch, chunk->datalen); if (cp) return offset + (cp - chunk->data); else offset += chunk->datalen; } return -1; } /** Try to read a single LF-terminated line from buf, and write it, * NUL-terminated, into the *data_len byte buffer at data_out. * Set *data_len to the number of bytes in the line, not counting the * terminating NUL. Return 1 if we read a whole line, return 0 if we don't * have a whole line yet, and return -1 if the line length exceeds * *data_len. */ int fetch_from_buf_line(buf_t *buf, char *data_out, size_t *data_len) { size_t sz; off_t offset; if (!buf->head) return 0; offset = buf_find_offset_of_char(buf, '\n'); if (offset < 0) return 0; sz = (size_t) offset; if (sz+2 > *data_len) { *data_len = sz + 2; return -1; } fetch_from_buf(data_out, sz+1, buf); data_out[sz+1] = '\0'; *data_len = sz+1; return 1; } /** Compress on uncompress the data_len bytes in data using the * zlib state state, appending the result to buf. If * done is true, flush the data in the state and finish the * compression/uncompression. Return -1 on failure, 0 on success. */ int write_to_buf_zlib(buf_t *buf, tor_zlib_state_t *state, const char *data, size_t data_len, int done) { char *next; size_t old_avail, avail; int over = 0; do { int need_new_chunk = 0; if (!buf->tail || ! CHUNK_REMAINING_CAPACITY(buf->tail)) { size_t cap = data_len / 4; buf_add_chunk_with_capacity(buf, cap, 1); } next = CHUNK_WRITE_PTR(buf->tail); avail = old_avail = CHUNK_REMAINING_CAPACITY(buf->tail); switch (tor_zlib_process(state, &next, &avail, &data, &data_len, done)) { case TOR_ZLIB_DONE: over = 1; break; case TOR_ZLIB_ERR: return -1; case TOR_ZLIB_OK: if (data_len == 0) over = 1; break; case TOR_ZLIB_BUF_FULL: if (avail) { /* Zlib says we need more room (ZLIB_BUF_FULL). Start a new chunk * automatically, whether were going to or not. */ need_new_chunk = 1; } break; } buf->datalen += old_avail - avail; buf->tail->datalen += old_avail - avail; if (need_new_chunk) { buf_add_chunk_with_capacity(buf, data_len/4, 1); } } while (!over); check(); return 0; } /** Log an error and exit if buf is corrupted. */ void assert_buf_ok(buf_t *buf) { tor_assert(buf); tor_assert(buf->magic == BUFFER_MAGIC); if (! buf->head) { tor_assert(!buf->tail); tor_assert(buf->datalen == 0); } else { chunk_t *ch; size_t total = 0; tor_assert(buf->tail); for (ch = buf->head; ch; ch = ch->next) { total += ch->datalen; tor_assert(ch->datalen <= ch->memlen); tor_assert(ch->data >= &ch->mem[0]); tor_assert(ch->data < &ch->mem[0]+ch->memlen); tor_assert(ch->data+ch->datalen <= &ch->mem[0] + ch->memlen); if (!ch->next) tor_assert(ch == buf->tail); } tor_assert(buf->datalen == total); } } #ifdef ENABLE_BUF_FREELISTS /** Log an error and exit if fl is corrupted. */ static void assert_freelist_ok(chunk_freelist_t *fl) { chunk_t *ch; int n; tor_assert(fl->alloc_size > 0); n = 0; for (ch = fl->head; ch; ch = ch->next) { tor_assert(CHUNK_ALLOC_SIZE(ch->memlen) == fl->alloc_size); ++n; } tor_assert(n == fl->cur_length); tor_assert(n >= fl->lowest_length); tor_assert(n <= fl->max_length); } #endif