/* Copyright (c) 2003, Roger Dingledine * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2011, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file util.c * \brief Common functions for strings, IO, network, data structures, * process control. **/ /* This is required on rh7 to make strptime not complain. */ #define _GNU_SOURCE #include "orconfig.h" #define UTIL_PRIVATE #include "util.h" #include "torlog.h" #undef log #include "crypto.h" #include "torint.h" #include "container.h" #include "address.h" #ifdef MS_WINDOWS #include #include #include #include #else #include #include #include #endif /* math.h needs this on Linux */ #ifndef __USE_ISOC99 #define __USE_ISOC99 1 #endif #include #include #include #include #include #ifdef HAVE_NETINET_IN_H #include #endif #ifdef HAVE_ARPA_INET_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_SYS_SOCKET_H #include #endif #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYS_STAT_H #include #endif #ifdef HAVE_SYS_FCNTL_H #include #endif #ifdef HAVE_FCNTL_H #include #endif #ifdef HAVE_TIME_H #include #endif #ifdef HAVE_MALLOC_MALLOC_H #include #endif #ifdef HAVE_MALLOC_H #ifndef OPENBSD /* OpenBSD has a malloc.h, but for our purposes, it only exists in order to * scold us for being so stupid as to autodetect its presence. To be fair, * they've done this since 1996, when autoconf was only 5 years old. */ #include #endif #endif #ifdef HAVE_MALLOC_NP_H #include #endif /* ===== * Memory management * ===== */ #ifdef USE_DMALLOC #undef strndup #include /* Macro to pass the extra dmalloc args to another function. */ #define DMALLOC_FN_ARGS , file, line #if defined(HAVE_DMALLOC_STRDUP) /* the dmalloc_strdup should be fine as defined */ #elif defined(HAVE_DMALLOC_STRNDUP) #define dmalloc_strdup(file, line, string, xalloc_b) \ dmalloc_strndup(file, line, (string), -1, xalloc_b) #else #error "No dmalloc_strdup or equivalent" #endif #else /* not using dmalloc */ #define DMALLOC_FN_ARGS #endif /** Allocate a chunk of size bytes of memory, and return a pointer to * result. On error, log and terminate the process. (Same as malloc(size), * but never returns NULL.) * * file and line are used if dmalloc is enabled, and * ignored otherwise. */ void * _tor_malloc(size_t size DMALLOC_PARAMS) { void *result; tor_assert(size < SIZE_T_CEILING); #ifndef MALLOC_ZERO_WORKS /* Some libc mallocs don't work when size==0. Override them. */ if (size==0) { size=1; } #endif #ifdef USE_DMALLOC result = dmalloc_malloc(file, line, size, DMALLOC_FUNC_MALLOC, 0, 0); #else result = malloc(size); #endif if (PREDICT_UNLIKELY(result == NULL)) { log_err(LD_MM,"Out of memory on malloc(). Dying."); /* If these functions die within a worker process, they won't call * spawn_exit, but that's ok, since the parent will run out of memory soon * anyway. */ exit(1); } return result; } /** Allocate a chunk of size bytes of memory, fill the memory with * zero bytes, and return a pointer to the result. Log and terminate * the process on error. (Same as calloc(size,1), but never returns NULL.) */ void * _tor_malloc_zero(size_t size DMALLOC_PARAMS) { /* You may ask yourself, "wouldn't it be smart to use calloc instead of * malloc+memset? Perhaps libc's calloc knows some nifty optimization trick * we don't!" Indeed it does, but its optimizations are only a big win when * we're allocating something very big (it knows if it just got the memory * from the OS in a pre-zeroed state). We don't want to use tor_malloc_zero * for big stuff, so we don't bother with calloc. */ void *result = _tor_malloc(size DMALLOC_FN_ARGS); memset(result, 0, size); return result; } /** Change the size of the memory block pointed to by ptr to size * bytes long; return the new memory block. On error, log and * terminate. (Like realloc(ptr,size), but never returns NULL.) */ void * _tor_realloc(void *ptr, size_t size DMALLOC_PARAMS) { void *result; tor_assert(size < SIZE_T_CEILING); #ifdef USE_DMALLOC result = dmalloc_realloc(file, line, ptr, size, DMALLOC_FUNC_REALLOC, 0); #else result = realloc(ptr, size); #endif if (PREDICT_UNLIKELY(result == NULL)) { log_err(LD_MM,"Out of memory on realloc(). Dying."); exit(1); } return result; } /** Return a newly allocated copy of the NUL-terminated string s. On * error, log and terminate. (Like strdup(s), but never returns * NULL.) */ char * _tor_strdup(const char *s DMALLOC_PARAMS) { char *dup; tor_assert(s); #ifdef USE_DMALLOC dup = dmalloc_strdup(file, line, s, 0); #else dup = strdup(s); #endif if (PREDICT_UNLIKELY(dup == NULL)) { log_err(LD_MM,"Out of memory on strdup(). Dying."); exit(1); } return dup; } /** Allocate and return a new string containing the first n * characters of s. If s is longer than n * characters, only the first n are copied. The result is * always NUL-terminated. (Like strndup(s,n), but never returns * NULL.) */ char * _tor_strndup(const char *s, size_t n DMALLOC_PARAMS) { char *dup; tor_assert(s); tor_assert(n < SIZE_T_CEILING); dup = _tor_malloc((n+1) DMALLOC_FN_ARGS); /* Performance note: Ordinarily we prefer strlcpy to strncpy. But * this function gets called a whole lot, and platform strncpy is * much faster than strlcpy when strlen(s) is much longer than n. */ strncpy(dup, s, n); dup[n]='\0'; return dup; } /** Allocate a chunk of len bytes, with the same contents as the * len bytes starting at mem. */ void * _tor_memdup(const void *mem, size_t len DMALLOC_PARAMS) { char *dup; tor_assert(len < SIZE_T_CEILING); tor_assert(mem); dup = _tor_malloc(len DMALLOC_FN_ARGS); memcpy(dup, mem, len); return dup; } /** Helper for places that need to take a function pointer to the right * spelling of "free()". */ void _tor_free(void *mem) { tor_free(mem); } #if defined(HAVE_MALLOC_GOOD_SIZE) && !defined(HAVE_MALLOC_GOOD_SIZE_PROTOTYPE) /* Some version of Mac OSX have malloc_good_size in their libc, but not * actually defined in malloc/malloc.h. We detect this and work around it by * prototyping. */ extern size_t malloc_good_size(size_t size); #endif /** Allocate and return a chunk of memory of size at least *size, using * the same resources we would use to malloc *sizep. Set *sizep * to the number of usable bytes in the chunk of memory. */ void * _tor_malloc_roundup(size_t *sizep DMALLOC_PARAMS) { #ifdef HAVE_MALLOC_GOOD_SIZE tor_assert(*sizep < SIZE_T_CEILING); *sizep = malloc_good_size(*sizep); return _tor_malloc(*sizep DMALLOC_FN_ARGS); #elif 0 && defined(HAVE_MALLOC_USABLE_SIZE) && !defined(USE_DMALLOC) /* Never use malloc_usable_size(); it makes valgrind really unhappy, * and doesn't win much in terms of usable space where it exists. */ void *result; tor_assert(*sizep < SIZE_T_CEILING); result = _tor_malloc(*sizep DMALLOC_FN_ARGS); *sizep = malloc_usable_size(result); return result; #else return _tor_malloc(*sizep DMALLOC_FN_ARGS); #endif } /** Call the platform malloc info function, and dump the results to the log at * level severity. If no such function exists, do nothing. */ void tor_log_mallinfo(int severity) { #ifdef HAVE_MALLINFO struct mallinfo mi; memset(&mi, 0, sizeof(mi)); mi = mallinfo(); tor_log(severity, LD_MM, "mallinfo() said: arena=%d, ordblks=%d, smblks=%d, hblks=%d, " "hblkhd=%d, usmblks=%d, fsmblks=%d, uordblks=%d, fordblks=%d, " "keepcost=%d", mi.arena, mi.ordblks, mi.smblks, mi.hblks, mi.hblkhd, mi.usmblks, mi.fsmblks, mi.uordblks, mi.fordblks, mi.keepcost); #else (void)severity; #endif #ifdef USE_DMALLOC dmalloc_log_changed(0, /* Since the program started. */ 1, /* Log info about non-freed pointers. */ 0, /* Do not log info about freed pointers. */ 0 /* Do not log individual pointers. */ ); #endif } /* ===== * Math * ===== */ /** * Returns the natural logarithm of d base 2. We define this wrapper here so * as to make it easier not to conflict with Tor's log() macro. */ double tor_mathlog(double d) { return log(d); } /** Return the long integer closest to d. We define this wrapper here so * that not all users of math.h need to use the right incancations to get * the c99 functions. */ long tor_lround(double d) { return lround(d); } /** Returns floor(log2(u64)). If u64 is 0, (incorrectly) returns 0. */ int tor_log2(uint64_t u64) { int r = 0; if (u64 >= (U64_LITERAL(1)<<32)) { u64 >>= 32; r = 32; } if (u64 >= (U64_LITERAL(1)<<16)) { u64 >>= 16; r += 16; } if (u64 >= (U64_LITERAL(1)<<8)) { u64 >>= 8; r += 8; } if (u64 >= (U64_LITERAL(1)<<4)) { u64 >>= 4; r += 4; } if (u64 >= (U64_LITERAL(1)<<2)) { u64 >>= 2; r += 2; } if (u64 >= (U64_LITERAL(1)<<1)) { u64 >>= 1; r += 1; } return r; } /** Return the power of 2 closest to u64. */ uint64_t round_to_power_of_2(uint64_t u64) { int lg2 = tor_log2(u64); uint64_t low = U64_LITERAL(1) << lg2, high = U64_LITERAL(1) << (lg2+1); if (high - u64 < u64 - low) return high; else return low; } /** Return the lowest x such that x is at least number, and x modulo * divisor == 0. */ unsigned round_to_next_multiple_of(unsigned number, unsigned divisor) { number += divisor - 1; number -= number % divisor; return number; } /** Return the lowest x such that x is at least number, and x modulo * divisor == 0. */ uint32_t round_uint32_to_next_multiple_of(uint32_t number, uint32_t divisor) { number += divisor - 1; number -= number % divisor; return number; } /** Return the lowest x such that x is at least number, and x modulo * divisor == 0. */ uint64_t round_uint64_to_next_multiple_of(uint64_t number, uint64_t divisor) { number += divisor - 1; number -= number % divisor; return number; } /* ===== * String manipulation * ===== */ /** Remove from the string s every character which appears in * strip. */ void tor_strstrip(char *s, const char *strip) { char *read = s; while (*read) { if (strchr(strip, *read)) { ++read; } else { *s++ = *read++; } } *s = '\0'; } /** Return a pointer to a NUL-terminated hexadecimal string encoding * the first fromlen bytes of from. (fromlen must be \<= 32.) The * result does not need to be deallocated, but repeated calls to * hex_str will trash old results. */ const char * hex_str(const char *from, size_t fromlen) { static char buf[65]; if (fromlen>(sizeof(buf)-1)/2) fromlen = (sizeof(buf)-1)/2; base16_encode(buf,sizeof(buf),from,fromlen); return buf; } /** Convert all alphabetic characters in the nul-terminated string s to * lowercase. */ void tor_strlower(char *s) { while (*s) { *s = TOR_TOLOWER(*s); ++s; } } /** Convert all alphabetic characters in the nul-terminated string s to * lowercase. */ void tor_strupper(char *s) { while (*s) { *s = TOR_TOUPPER(*s); ++s; } } /** Return 1 if every character in s is printable, else return 0. */ int tor_strisprint(const char *s) { while (*s) { if (!TOR_ISPRINT(*s)) return 0; s++; } return 1; } /** Return 1 if no character in s is uppercase, else return 0. */ int tor_strisnonupper(const char *s) { while (*s) { if (TOR_ISUPPER(*s)) return 0; s++; } return 1; } /** Compares the first strlen(s2) characters of s1 with s2. Returns as for * strcmp. */ int strcmpstart(const char *s1, const char *s2) { size_t n = strlen(s2); return strncmp(s1, s2, n); } /** Compare the s1_len-byte string s1 with s2, * without depending on a terminating nul in s1. Sorting order is first by * length, then lexically; return values are as for strcmp. */ int strcmp_len(const char *s1, const char *s2, size_t s1_len) { size_t s2_len = strlen(s2); if (s1_len < s2_len) return -1; if (s1_len > s2_len) return 1; return fast_memcmp(s1, s2, s2_len); } /** Compares the first strlen(s2) characters of s1 with s2. Returns as for * strcasecmp. */ int strcasecmpstart(const char *s1, const char *s2) { size_t n = strlen(s2); return strncasecmp(s1, s2, n); } /** Compares the last strlen(s2) characters of s1 with s2. Returns as for * strcmp. */ int strcmpend(const char *s1, const char *s2) { size_t n1 = strlen(s1), n2 = strlen(s2); if (n2>n1) return strcmp(s1,s2); else return strncmp(s1+(n1-n2), s2, n2); } /** Compares the last strlen(s2) characters of s1 with s2. Returns as for * strcasecmp. */ int strcasecmpend(const char *s1, const char *s2) { size_t n1 = strlen(s1), n2 = strlen(s2); if (n2>n1) /* then they can't be the same; figure out which is bigger */ return strcasecmp(s1,s2); else return strncasecmp(s1+(n1-n2), s2, n2); } /** Compare the value of the string prefix with the start of the * memlen-byte memory chunk at mem. Return as for strcmp. * * [As fast_memcmp(mem, prefix, strlen(prefix)) but returns -1 if memlen is * less than strlen(prefix).] */ int fast_memcmpstart(const void *mem, size_t memlen, const char *prefix) { size_t plen = strlen(prefix); if (memlen < plen) return -1; return fast_memcmp(mem, prefix, plen); } /** Return a pointer to the first char of s that is not whitespace and * not a comment, or to the terminating NUL if no such character exists. */ const char * eat_whitespace(const char *s) { tor_assert(s); while (1) { switch (*s) { case '\0': default: return s; case ' ': case '\t': case '\n': case '\r': ++s; break; case '#': ++s; while (*s && *s != '\n') ++s; } } } /** Return a pointer to the first char of s that is not whitespace and * not a comment, or to the terminating NUL if no such character exists. */ const char * eat_whitespace_eos(const char *s, const char *eos) { tor_assert(s); tor_assert(eos && s <= eos); while (s < eos) { switch (*s) { case '\0': default: return s; case ' ': case '\t': case '\n': case '\r': ++s; break; case '#': ++s; while (s < eos && *s && *s != '\n') ++s; } } return s; } /** Return a pointer to the first char of s that is not a space or a tab * or a \\r, or to the terminating NUL if no such character exists. */ const char * eat_whitespace_no_nl(const char *s) { while (*s == ' ' || *s == '\t' || *s == '\r') ++s; return s; } /** As eat_whitespace_no_nl, but stop at eos whether we have * found a non-whitespace character or not. */ const char * eat_whitespace_eos_no_nl(const char *s, const char *eos) { while (s < eos && (*s == ' ' || *s == '\t' || *s == '\r')) ++s; return s; } /** Return a pointer to the first char of s that is whitespace or #, * or to the terminating NUL if no such character exists. */ const char * find_whitespace(const char *s) { /* tor_assert(s); */ while (1) { switch (*s) { case '\0': case '#': case ' ': case '\r': case '\n': case '\t': return s; default: ++s; } } } /** As find_whitespace, but stop at eos whether we have found a * whitespace or not. */ const char * find_whitespace_eos(const char *s, const char *eos) { /* tor_assert(s); */ while (s < eos) { switch (*s) { case '\0': case '#': case ' ': case '\r': case '\n': case '\t': return s; default: ++s; } } return s; } /** Return the first occurrence of needle in haystack that * occurs at the start of a line (that is, at the beginning of haystack * or immediately after a newline). Return NULL if no such string is found. */ const char * find_str_at_start_of_line(const char *haystack, const char *needle) { size_t needle_len = strlen(needle); do { if (!strncmp(haystack, needle, needle_len)) return haystack; haystack = strchr(haystack, '\n'); if (!haystack) return NULL; else ++haystack; } while (*haystack); return NULL; } /** Return true iff the 'len' bytes at 'mem' are all zero. */ int tor_mem_is_zero(const char *mem, size_t len) { static const char ZERO[] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, }; while (len >= sizeof(ZERO)) { /* It's safe to use fast_memcmp here, since the very worst thing an * attacker could learn is how many initial bytes of a secret were zero */ if (fast_memcmp(mem, ZERO, sizeof(ZERO))) return 0; len -= sizeof(ZERO); mem += sizeof(ZERO); } /* Deal with leftover bytes. */ if (len) return fast_memeq(mem, ZERO, len); return 1; } /** Return true iff the DIGEST_LEN bytes in digest are all zero. */ int tor_digest_is_zero(const char *digest) { static const uint8_t ZERO_DIGEST[] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 }; return tor_memeq(digest, ZERO_DIGEST, DIGEST_LEN); } /** Return true iff the DIGEST256_LEN bytes in digest are all zero. */ int tor_digest256_is_zero(const char *digest) { return tor_mem_is_zero(digest, DIGEST256_LEN); } /* Helper: common code to check whether the result of a strtol or strtoul or * strtoll is correct. */ #define CHECK_STRTOX_RESULT() \ /* Was at least one character converted? */ \ if (endptr == s) \ goto err; \ /* Were there unexpected unconverted characters? */ \ if (!next && *endptr) \ goto err; \ /* Is r within limits? */ \ if (r < min || r > max) \ goto err; \ if (ok) *ok = 1; \ if (next) *next = endptr; \ return r; \ err: \ if (ok) *ok = 0; \ if (next) *next = endptr; \ return 0 /** Extract a long from the start of s, in the given numeric * base. If base is 0, s is parsed as a decimal, * octal, or hex number in the syntax of a C integer literal. If * there is unconverted data and next is provided, set * *next to the first unconverted character. An error has * occurred if no characters are converted; or if there are * unconverted characters and next is NULL; or if the parsed * value is not between min and max. When no error * occurs, return the parsed value and set *ok (if provided) to * 1. When an error occurs, return 0 and set *ok (if provided) * to 0. */ long tor_parse_long(const char *s, int base, long min, long max, int *ok, char **next) { char *endptr; long r; r = strtol(s, &endptr, base); CHECK_STRTOX_RESULT(); } /** As tor_parse_long(), but return an unsigned long. */ unsigned long tor_parse_ulong(const char *s, int base, unsigned long min, unsigned long max, int *ok, char **next) { char *endptr; unsigned long r; r = strtoul(s, &endptr, base); CHECK_STRTOX_RESULT(); } /** As tor_parse_long(), but return a double. */ double tor_parse_double(const char *s, double min, double max, int *ok, char **next) { char *endptr; double r; r = strtod(s, &endptr); CHECK_STRTOX_RESULT(); } /** As tor_parse_long, but return a uint64_t. Only base 10 is guaranteed to * work for now. */ uint64_t tor_parse_uint64(const char *s, int base, uint64_t min, uint64_t max, int *ok, char **next) { char *endptr; uint64_t r; #ifdef HAVE_STRTOULL r = (uint64_t)strtoull(s, &endptr, base); #elif defined(MS_WINDOWS) #if defined(_MSC_VER) && _MSC_VER < 1300 tor_assert(base <= 10); r = (uint64_t)_atoi64(s); endptr = (char*)s; while (TOR_ISSPACE(*endptr)) endptr++; while (TOR_ISDIGIT(*endptr)) endptr++; #else r = (uint64_t)_strtoui64(s, &endptr, base); #endif #elif SIZEOF_LONG == 8 r = (uint64_t)strtoul(s, &endptr, base); #else #error "I don't know how to parse 64-bit numbers." #endif CHECK_STRTOX_RESULT(); } /** Encode the srclen bytes at src in a NUL-terminated, * uppercase hexadecimal string; store it in the destlen-byte buffer * dest. */ void base16_encode(char *dest, size_t destlen, const char *src, size_t srclen) { const char *end; char *cp; tor_assert(destlen >= srclen*2+1); tor_assert(destlen < SIZE_T_CEILING); cp = dest; end = src+srclen; while (src> 4 ]; *cp++ = "0123456789ABCDEF"[ (*(const uint8_t*)src) & 0xf ]; ++src; } *cp = '\0'; } /** Helper: given a hex digit, return its value, or -1 if it isn't hex. */ static INLINE int _hex_decode_digit(char c) { switch (c) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; case 'A': case 'a': return 10; case 'B': case 'b': return 11; case 'C': case 'c': return 12; case 'D': case 'd': return 13; case 'E': case 'e': return 14; case 'F': case 'f': return 15; default: return -1; } } /** Helper: given a hex digit, return its value, or -1 if it isn't hex. */ int hex_decode_digit(char c) { return _hex_decode_digit(c); } /** Given a hexadecimal string of srclen bytes in src, decode it * and store the result in the destlen-byte buffer at dest. * Return 0 on success, -1 on failure. */ int base16_decode(char *dest, size_t destlen, const char *src, size_t srclen) { const char *end; int v1,v2; if ((srclen % 2) != 0) return -1; if (destlen < srclen/2 || destlen > SIZE_T_CEILING) return -1; end = src+srclen; while (srcs, * surrounded by quotes and using standard C escapes. * * Generally, we use this for logging values that come in over the network to * keep them from tricking users, and for sending certain values to the * controller. * * We trust values from the resolver, OS, configuration file, and command line * to not be maliciously ill-formed. We validate incoming routerdescs and * SOCKS requests and addresses from BEGIN cells as they're parsed; * afterwards, we trust them as non-malicious. */ char * esc_for_log(const char *s) { const char *cp; char *result, *outp; size_t len = 3; if (!s) { return tor_strdup("(null)"); } for (cp = s; *cp; ++cp) { switch (*cp) { case '\\': case '\"': case '\'': case '\r': case '\n': case '\t': len += 2; break; default: if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127) ++len; else len += 4; break; } } result = outp = tor_malloc(len); *outp++ = '\"'; for (cp = s; *cp; ++cp) { switch (*cp) { case '\\': case '\"': case '\'': *outp++ = '\\'; *outp++ = *cp; break; case '\n': *outp++ = '\\'; *outp++ = 'n'; break; case '\t': *outp++ = '\\'; *outp++ = 't'; break; case '\r': *outp++ = '\\'; *outp++ = 'r'; break; default: if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127) { *outp++ = *cp; } else { tor_snprintf(outp, 5, "\\%03o", (int)(uint8_t) *cp); outp += 4; } break; } } *outp++ = '\"'; *outp++ = 0; return result; } /** Allocate and return a new string representing the contents of s, * surrounded by quotes and using standard C escapes. * * THIS FUNCTION IS NOT REENTRANT. Don't call it from outside the main * thread. Also, each call invalidates the last-returned value, so don't * try log_warn(LD_GENERAL, "%s %s", escaped(a), escaped(b)); */ const char * escaped(const char *s) { static char *_escaped_val = NULL; tor_free(_escaped_val); if (s) _escaped_val = esc_for_log(s); else _escaped_val = NULL; return _escaped_val; } /** Rudimentary string wrapping code: given a un-wrapped string (no * newlines!), break the string into newline-terminated lines of no more than * width characters long (not counting newline) and insert them into * out in order. Precede the first line with prefix0, and subsequent * lines with prefixRest. */ /* This uses a stupid greedy wrapping algorithm right now: * - For each line: * - Try to fit as much stuff as possible, but break on a space. * - If the first "word" of the line will extend beyond the allowable * width, break the word at the end of the width. */ void wrap_string(smartlist_t *out, const char *string, size_t width, const char *prefix0, const char *prefixRest) { size_t p0Len, pRestLen, pCurLen; const char *eos, *prefixCur; tor_assert(out); tor_assert(string); tor_assert(width); if (!prefix0) prefix0 = ""; if (!prefixRest) prefixRest = ""; p0Len = strlen(prefix0); pRestLen = strlen(prefixRest); tor_assert(width > p0Len && width > pRestLen); eos = strchr(string, '\0'); tor_assert(eos); pCurLen = p0Len; prefixCur = prefix0; while ((eos-string)+pCurLen > width) { const char *eol = string + width - pCurLen; while (eol > string && *eol != ' ') --eol; /* eol is now the last space that can fit, or the start of the string. */ if (eol > string) { size_t line_len = (eol-string) + pCurLen + 2; char *line = tor_malloc(line_len); memcpy(line, prefixCur, pCurLen); memcpy(line+pCurLen, string, eol-string); line[line_len-2] = '\n'; line[line_len-1] = '\0'; smartlist_add(out, line); string = eol + 1; } else { size_t line_len = width + 2; char *line = tor_malloc(line_len); memcpy(line, prefixCur, pCurLen); memcpy(line+pCurLen, string, width - pCurLen); line[line_len-2] = '\n'; line[line_len-1] = '\0'; smartlist_add(out, line); string += width-pCurLen; } prefixCur = prefixRest; pCurLen = pRestLen; } if (string < eos) { size_t line_len = (eos-string) + pCurLen + 2; char *line = tor_malloc(line_len); memcpy(line, prefixCur, pCurLen); memcpy(line+pCurLen, string, eos-string); line[line_len-2] = '\n'; line[line_len-1] = '\0'; smartlist_add(out, line); } } /* ===== * Time * ===== */ /** * Converts struct timeval to a double value. * Preserves microsecond precision, but just barely. * Error is approx +/- 0.1 usec when dealing with epoch values. */ double tv_to_double(const struct timeval *tv) { double conv = tv->tv_sec; conv += tv->tv_usec/1000000.0; return conv; } /** * Converts timeval to milliseconds. */ int64_t tv_to_msec(const struct timeval *tv) { int64_t conv = ((int64_t)tv->tv_sec)*1000L; /* Round ghetto-style */ conv += ((int64_t)tv->tv_usec+500)/1000L; return conv; } /** * Converts timeval to microseconds. */ int64_t tv_to_usec(const struct timeval *tv) { int64_t conv = ((int64_t)tv->tv_sec)*1000000L; conv += tv->tv_usec; return conv; } /** Return the number of microseconds elapsed between *start and *end. */ long tv_udiff(const struct timeval *start, const struct timeval *end) { long udiff; long secdiff = end->tv_sec - start->tv_sec; if (labs(secdiff+1) > LONG_MAX/1000000) { log_warn(LD_GENERAL, "comparing times on microsecond detail too far " "apart: %ld seconds", secdiff); return LONG_MAX; } udiff = secdiff*1000000L + (end->tv_usec - start->tv_usec); return udiff; } /** Return the number of milliseconds elapsed between *start and *end. */ long tv_mdiff(const struct timeval *start, const struct timeval *end) { long mdiff; long secdiff = end->tv_sec - start->tv_sec; if (labs(secdiff+1) > LONG_MAX/1000) { log_warn(LD_GENERAL, "comparing times on millisecond detail too far " "apart: %ld seconds", secdiff); return LONG_MAX; } /* Subtract and round */ mdiff = secdiff*1000L + ((long)end->tv_usec - (long)start->tv_usec + 500L) / 1000L; return mdiff; } /** Yield true iff y is a leap-year. */ #define IS_LEAPYEAR(y) (!(y % 4) && ((y % 100) || !(y % 400))) /** Helper: Return the number of leap-days between Jan 1, y1 and Jan 1, y2. */ static int n_leapdays(int y1, int y2) { --y1; --y2; return (y2/4 - y1/4) - (y2/100 - y1/100) + (y2/400 - y1/400); } /** Number of days per month in non-leap year; used by tor_timegm. */ static const int days_per_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; /** Return a time_t given a struct tm. The result is given in GMT, and * does not account for leap seconds. */ time_t tor_timegm(struct tm *tm) { /* This is a pretty ironclad timegm implementation, snarfed from Python2.2. * It's way more brute-force than fiddling with tzset(). */ time_t year, days, hours, minutes, seconds; int i; year = tm->tm_year + 1900; if (year < 1970 || tm->tm_mon < 0 || tm->tm_mon > 11) { log_warn(LD_BUG, "Out-of-range argument to tor_timegm"); return -1; } tor_assert(year < INT_MAX); days = 365 * (year-1970) + n_leapdays(1970,(int)year); for (i = 0; i < tm->tm_mon; ++i) days += days_per_month[i]; if (tm->tm_mon > 1 && IS_LEAPYEAR(year)) ++days; days += tm->tm_mday - 1; hours = days*24 + tm->tm_hour; minutes = hours*60 + tm->tm_min; seconds = minutes*60 + tm->tm_sec; return seconds; } /* strftime is locale-specific, so we need to replace those parts */ /** A c-locale array of 3-letter names of weekdays, starting with Sun. */ static const char *WEEKDAY_NAMES[] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; /** A c-locale array of 3-letter names of months, starting with Jan. */ static const char *MONTH_NAMES[] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; /** Set buf to the RFC1123 encoding of the GMT value of t. * The buffer must be at least RFC1123_TIME_LEN+1 bytes long. * * (RFC1123 format is Fri, 29 Sep 2006 15:54:20 GMT) */ void format_rfc1123_time(char *buf, time_t t) { struct tm tm; tor_gmtime_r(&t, &tm); strftime(buf, RFC1123_TIME_LEN+1, "___, %d ___ %Y %H:%M:%S GMT", &tm); tor_assert(tm.tm_wday >= 0); tor_assert(tm.tm_wday <= 6); memcpy(buf, WEEKDAY_NAMES[tm.tm_wday], 3); tor_assert(tm.tm_wday >= 0); tor_assert(tm.tm_mon <= 11); memcpy(buf+8, MONTH_NAMES[tm.tm_mon], 3); } /** Parse the RFC1123 encoding of some time (in GMT) from buf, * and store the result in *t. * * Return 0 on success, -1 on failure. */ int parse_rfc1123_time(const char *buf, time_t *t) { struct tm tm; char month[4]; char weekday[4]; int i, m; unsigned tm_mday, tm_year, tm_hour, tm_min, tm_sec; if (strlen(buf) != RFC1123_TIME_LEN) return -1; memset(&tm, 0, sizeof(tm)); if (tor_sscanf(buf, "%3s, %2u %3s %u %2u:%2u:%2u GMT", weekday, &tm_mday, month, &tm_year, &tm_hour, &tm_min, &tm_sec) < 7) { char *esc = esc_for_log(buf); log_warn(LD_GENERAL, "Got invalid RFC1123 time %s", esc); tor_free(esc); return -1; } if (tm_mday > 31 || tm_hour > 23 || tm_min > 59 || tm_sec > 61) { char *esc = esc_for_log(buf); log_warn(LD_GENERAL, "Got invalid RFC1123 time %s", esc); tor_free(esc); return -1; } tm.tm_mday = (int)tm_mday; tm.tm_year = (int)tm_year; tm.tm_hour = (int)tm_hour; tm.tm_min = (int)tm_min; tm.tm_sec = (int)tm_sec; m = -1; for (i = 0; i < 12; ++i) { if (!strcmp(month, MONTH_NAMES[i])) { m = i; break; } } if (m<0) { char *esc = esc_for_log(buf); log_warn(LD_GENERAL, "Got invalid RFC1123 time %s: No such month", esc); tor_free(esc); return -1; } tm.tm_mon = m; if (tm.tm_year < 1970) { char *esc = esc_for_log(buf); log_warn(LD_GENERAL, "Got invalid RFC1123 time %s. (Before 1970)", esc); tor_free(esc); return -1; } tm.tm_year -= 1900; *t = tor_timegm(&tm); return 0; } /** Set buf to the ISO8601 encoding of the local value of t. * The buffer must be at least ISO_TIME_LEN+1 bytes long. * * (ISO8601 format is 2006-10-29 10:57:20) */ void format_local_iso_time(char *buf, time_t t) { struct tm tm; strftime(buf, ISO_TIME_LEN+1, "%Y-%m-%d %H:%M:%S", tor_localtime_r(&t, &tm)); } /** Set buf to the ISO8601 encoding of the GMT value of t. * The buffer must be at least ISO_TIME_LEN+1 bytes long. */ void format_iso_time(char *buf, time_t t) { struct tm tm; strftime(buf, ISO_TIME_LEN+1, "%Y-%m-%d %H:%M:%S", tor_gmtime_r(&t, &tm)); } /** Given an ISO-formatted UTC time value (after the epoch) in cp, * parse it and store its value in *t. Return 0 on success, -1 on * failure. Ignore extraneous stuff in cp separated by whitespace from * the end of the time string. */ int parse_iso_time(const char *cp, time_t *t) { struct tm st_tm; unsigned int year=0, month=0, day=0, hour=100, minute=100, second=100; if (tor_sscanf(cp, "%u-%2u-%2u %2u:%2u:%2u", &year, &month, &day, &hour, &minute, &second) < 6) { char *esc = esc_for_log(cp); log_warn(LD_GENERAL, "ISO time %s was unparseable", esc); tor_free(esc); return -1; } if (year < 1970 || month < 1 || month > 12 || day < 1 || day > 31 || hour > 23 || minute > 59 || second > 61) { char *esc = esc_for_log(cp); log_warn(LD_GENERAL, "ISO time %s was nonsensical", esc); tor_free(esc); return -1; } st_tm.tm_year = year-1900; st_tm.tm_mon = month-1; st_tm.tm_mday = day; st_tm.tm_hour = hour; st_tm.tm_min = minute; st_tm.tm_sec = second; if (st_tm.tm_year < 70) { char *esc = esc_for_log(cp); log_warn(LD_GENERAL, "Got invalid ISO time %s. (Before 1970)", esc); tor_free(esc); return -1; } *t = tor_timegm(&st_tm); return 0; } /** Given a date in one of the three formats allowed by HTTP (ugh), * parse it into tm. Return 0 on success, negative on failure. */ int parse_http_time(const char *date, struct tm *tm) { const char *cp; char month[4]; char wkday[4]; int i; unsigned tm_mday, tm_year, tm_hour, tm_min, tm_sec; tor_assert(tm); memset(tm, 0, sizeof(*tm)); /* First, try RFC1123 or RFC850 format: skip the weekday. */ if ((cp = strchr(date, ','))) { ++cp; if (tor_sscanf(date, "%2u %3s %4u %2u:%2u:%2u GMT", &tm_mday, month, &tm_year, &tm_hour, &tm_min, &tm_sec) == 6) { /* rfc1123-date */ tm_year -= 1900; } else if (tor_sscanf(date, "%2u-%3s-%2u %2u:%2u:%2u GMT", &tm_mday, month, &tm_year, &tm_hour, &tm_min, &tm_sec) == 6) { /* rfc850-date */ } else { return -1; } } else { /* No comma; possibly asctime() format. */ if (tor_sscanf(date, "%3s %3s %2u %2u:%2u:%2u %4u", wkday, month, &tm_mday, &tm_hour, &tm_min, &tm_sec, &tm_year) == 7) { tm_year -= 1900; } else { return -1; } } tm->tm_mday = (int)tm_mday; tm->tm_year = (int)tm_year; tm->tm_hour = (int)tm_hour; tm->tm_min = (int)tm_min; tm->tm_sec = (int)tm_sec; month[3] = '\0'; /* Okay, now decode the month. */ for (i = 0; i < 12; ++i) { if (!strcasecmp(MONTH_NAMES[i], month)) { tm->tm_mon = i+1; } } if (tm->tm_year < 0 || tm->tm_mon < 1 || tm->tm_mon > 12 || tm->tm_mday < 0 || tm->tm_mday > 31 || tm->tm_hour < 0 || tm->tm_hour > 23 || tm->tm_min < 0 || tm->tm_min > 59 || tm->tm_sec < 0 || tm->tm_sec > 61) return -1; /* Out of range, or bad month. */ return 0; } /** Given an interval in seconds, try to write it to the * out_len-byte buffer in out in a human-readable form. * Return 0 on success, -1 on failure. */ int format_time_interval(char *out, size_t out_len, long interval) { /* We only report seconds if there's no hours. */ long sec = 0, min = 0, hour = 0, day = 0; if (interval < 0) interval = -interval; if (interval >= 86400) { day = interval / 86400; interval %= 86400; } if (interval >= 3600) { hour = interval / 3600; interval %= 3600; } if (interval >= 60) { min = interval / 60; interval %= 60; } sec = interval; if (day) { return tor_snprintf(out, out_len, "%ld days, %ld hours, %ld minutes", day, hour, min); } else if (hour) { return tor_snprintf(out, out_len, "%ld hours, %ld minutes", hour, min); } else if (min) { return tor_snprintf(out, out_len, "%ld minutes, %ld seconds", min, sec); } else { return tor_snprintf(out, out_len, "%ld seconds", sec); } } /* ===== * Cached time * ===== */ #ifndef TIME_IS_FAST /** Cached estimate of the current time. Updated around once per second; * may be a few seconds off if we are really busy. This is a hack to avoid * calling time(NULL) (which not everybody has optimized) on critical paths. */ static time_t cached_approx_time = 0; /** Return a cached estimate of the current time from when * update_approx_time() was last called. This is a hack to avoid calling * time(NULL) on critical paths: please do not even think of calling it * anywhere else. */ time_t approx_time(void) { return cached_approx_time; } /** Update the cached estimate of the current time. This function SHOULD be * called once per second, and MUST be called before the first call to * get_approx_time. */ void update_approx_time(time_t now) { cached_approx_time = now; } #endif /* ===== * Rate limiting * ===== */ /** If the rate-limiter lim is ready at now, return the number * of calls to rate_limit_is_ready (including this one!) since the last time * rate_limit_is_ready returned nonzero. Otherwise return 0. */ static int rate_limit_is_ready(ratelim_t *lim, time_t now) { if (lim->rate + lim->last_allowed <= now) { int res = lim->n_calls_since_last_time + 1; lim->last_allowed = now; lim->n_calls_since_last_time = 0; return res; } else { ++lim->n_calls_since_last_time; return 0; } } /** If the rate-limiter lim is ready at now, return a newly * allocated string indicating how many messages were suppressed, suitable to * append to a log message. Otherwise return NULL. */ char * rate_limit_log(ratelim_t *lim, time_t now) { int n; if ((n = rate_limit_is_ready(lim, now))) { if (n == 1) { return tor_strdup(""); } else { char *cp=NULL; tor_asprintf(&cp, " [%d similar message(s) suppressed in last %d seconds]", n-1, lim->rate); return cp; } } else { return NULL; } } /* ===== * File helpers * ===== */ /** Write count bytes from buf to fd. isSocket * must be 1 if fd was returned by socket() or accept(), and 0 if fd * was returned by open(). Return the number of bytes written, or -1 * on error. Only use if fd is a blocking fd. */ ssize_t write_all(tor_socket_t fd, const char *buf, size_t count, int isSocket) { size_t written = 0; ssize_t result; tor_assert(count < SSIZE_T_MAX); while (written != count) { if (isSocket) result = tor_socket_send(fd, buf+written, count-written, 0); else result = write((int)fd, buf+written, count-written); if (result<0) return -1; written += result; } return (ssize_t)count; } /** Read from fd to buf, until we get count bytes * or reach the end of the file. isSocket must be 1 if fd * was returned by socket() or accept(), and 0 if fd was returned by * open(). Return the number of bytes read, or -1 on error. Only use * if fd is a blocking fd. */ ssize_t read_all(tor_socket_t fd, char *buf, size_t count, int isSocket) { size_t numread = 0; ssize_t result; if (count > SIZE_T_CEILING || count > SSIZE_T_MAX) return -1; while (numread != count) { if (isSocket) result = tor_socket_recv(fd, buf+numread, count-numread, 0); else result = read((int)fd, buf+numread, count-numread); if (result<0) return -1; else if (result == 0) break; numread += result; } return (ssize_t)numread; } /* * Filesystem operations. */ /** Clean up name so that we can use it in a call to "stat". On Unix, * we do nothing. On Windows, we remove a trailing slash, unless the path is * the root of a disk. */ static void clean_name_for_stat(char *name) { #ifdef MS_WINDOWS size_t len = strlen(name); if (!len) return; if (name[len-1]=='\\' || name[len-1]=='/') { if (len == 1 || (len==3 && name[1]==':')) return; name[len-1]='\0'; } #else (void)name; #endif } /** Return FN_ERROR if filename can't be read, FN_NOENT if it doesn't * exist, FN_FILE if it is a regular file, or FN_DIR if it's a * directory. On FN_ERROR, sets errno. */ file_status_t file_status(const char *fname) { struct stat st; char *f; int r; f = tor_strdup(fname); clean_name_for_stat(f); r = stat(f, &st); tor_free(f); if (r) { if (errno == ENOENT) { return FN_NOENT; } return FN_ERROR; } if (st.st_mode & S_IFDIR) return FN_DIR; else if (st.st_mode & S_IFREG) return FN_FILE; else return FN_ERROR; } /** Check whether dirname exists and is private. If yes return 0. If * it does not exist, and check&CPD_CREATE is set, try to create it * and return 0 on success. If it does not exist, and * check&CPD_CHECK, and we think we can create it, return 0. Else * return -1. If CPD_GROUP_OK is set, then it's okay if the directory * is group-readable, but in all cases we create the directory mode 0700. * If CPD_CHECK_MODE_ONLY is set, then we don't alter the directory permissions * if they are too permissive: we just return -1. * When effective_user is not NULL, check permissions against the given user * and its primary group. */ int check_private_dir(const char *dirname, cpd_check_t check, const char *effective_user) { int r; struct stat st; char *f; #ifndef MS_WINDOWS int mask; struct passwd *pw = NULL; uid_t running_uid; gid_t running_gid; #endif tor_assert(dirname); f = tor_strdup(dirname); clean_name_for_stat(f); r = stat(f, &st); tor_free(f); if (r) { if (errno != ENOENT) { log_warn(LD_FS, "Directory %s cannot be read: %s", dirname, strerror(errno)); return -1; } if (check & CPD_CREATE) { log_info(LD_GENERAL, "Creating directory %s", dirname); #if defined (MS_WINDOWS) && !defined (WINCE) r = mkdir(dirname); #else r = mkdir(dirname, 0700); #endif if (r) { log_warn(LD_FS, "Error creating directory %s: %s", dirname, strerror(errno)); return -1; } } else if (!(check & CPD_CHECK)) { log_warn(LD_FS, "Directory %s does not exist.", dirname); return -1; } /* XXXX In the case where check==CPD_CHECK, we should look at the * parent directory a little harder. */ return 0; } if (!(st.st_mode & S_IFDIR)) { log_warn(LD_FS, "%s is not a directory", dirname); return -1; } #ifndef MS_WINDOWS if (effective_user) { /* Look up the user and group information. * If we have a problem, bail out. */ pw = getpwnam(effective_user); if (pw == NULL) { log_warn(LD_CONFIG, "Error setting configured user: %s not found", effective_user); return -1; } running_uid = pw->pw_uid; running_gid = pw->pw_gid; } else { running_uid = getuid(); running_gid = getgid(); } if (st.st_uid != running_uid) { struct passwd *pw = NULL; char *process_ownername = NULL; pw = getpwuid(running_uid); process_ownername = pw ? tor_strdup(pw->pw_name) : tor_strdup(""); pw = getpwuid(st.st_uid); log_warn(LD_FS, "%s is not owned by this user (%s, %d) but by " "%s (%d). Perhaps you are running Tor as the wrong user?", dirname, process_ownername, (int)running_uid, pw ? pw->pw_name : "", (int)st.st_uid); tor_free(process_ownername); return -1; } if ((check & CPD_GROUP_OK) && st.st_gid != running_gid) { struct group *gr; char *process_groupname = NULL; gr = getgrgid(running_gid); process_groupname = gr ? tor_strdup(gr->gr_name) : tor_strdup(""); gr = getgrgid(st.st_gid); log_warn(LD_FS, "%s is not owned by this group (%s, %d) but by group " "%s (%d). Are you running Tor as the wrong user?", dirname, process_groupname, (int)running_gid, gr ? gr->gr_name : "", (int)st.st_gid); tor_free(process_groupname); return -1; } if (check & CPD_GROUP_OK) { mask = 0027; } else { mask = 0077; } if (st.st_mode & mask) { unsigned new_mode; if (check & CPD_CHECK_MODE_ONLY) { log_warn(LD_FS, "Permissions on directory %s are too permissive.", dirname); return -1; } log_warn(LD_FS, "Fixing permissions on directory %s", dirname); new_mode = st.st_mode; new_mode |= 0700; /* Owner should have rwx */ new_mode &= ~mask; /* Clear the other bits that we didn't want set...*/ if (chmod(dirname, new_mode)) { log_warn(LD_FS, "Could not chmod directory %s: %s", dirname, strerror(errno)); return -1; } else { return 0; } } #endif return 0; } /** Create a file named fname with the contents str. Overwrite * the previous fname if possible. Return 0 on success, -1 on failure. * * This function replaces the old file atomically, if possible. This * function, and all other functions in util.c that create files, create them * with mode 0600. */ int write_str_to_file(const char *fname, const char *str, int bin) { #ifdef MS_WINDOWS if (!bin && strchr(str, '\r')) { log_warn(LD_BUG, "We're writing a text string that already contains a CR."); } #endif return write_bytes_to_file(fname, str, strlen(str), bin); } /** Represents a file that we're writing to, with support for atomic commit: * we can write into a temporary file, and either remove the file on * failure, or replace the original file on success. */ struct open_file_t { char *tempname; /**< Name of the temporary file. */ char *filename; /**< Name of the original file. */ unsigned rename_on_close:1; /**< Are we using the temporary file or not? */ unsigned binary:1; /**< Did we open in binary mode? */ int fd; /**< fd for the open file. */ FILE *stdio_file; /**< stdio wrapper for fd. */ }; /** Try to start writing to the file in fname, passing the flags * open_flags to the open() syscall, creating the file (if needed) with * access value mode. If the O_APPEND flag is set, we append to the * original file. Otherwise, we open a new temporary file in the same * directory, and either replace the original or remove the temporary file * when we're done. * * Return the fd for the newly opened file, and store working data in * *data_out. The caller should not close the fd manually: * instead, call finish_writing_to_file() or abort_writing_to_file(). * Returns -1 on failure. * * NOTE: When not appending, the flags O_CREAT and O_TRUNC are treated * as true and the flag O_EXCL is treated as false. * * NOTE: Ordinarily, O_APPEND means "seek to the end of the file before each * write()". We don't do that. */ int start_writing_to_file(const char *fname, int open_flags, int mode, open_file_t **data_out) { size_t tempname_len = strlen(fname)+16; open_file_t *new_file = tor_malloc_zero(sizeof(open_file_t)); const char *open_name; int append = 0; tor_assert(fname); tor_assert(data_out); #if (O_BINARY != 0 && O_TEXT != 0) tor_assert((open_flags & (O_BINARY|O_TEXT)) != 0); #endif new_file->fd = -1; tor_assert(tempname_len > strlen(fname)); /*check for overflow*/ new_file->filename = tor_strdup(fname); if (open_flags & O_APPEND) { open_name = fname; new_file->rename_on_close = 0; append = 1; open_flags &= ~O_APPEND; } else { open_name = new_file->tempname = tor_malloc(tempname_len); if (tor_snprintf(new_file->tempname, tempname_len, "%s.tmp", fname)<0) { log_warn(LD_GENERAL, "Failed to generate filename"); goto err; } /* We always replace an existing temporary file if there is one. */ open_flags |= O_CREAT|O_TRUNC; open_flags &= ~O_EXCL; new_file->rename_on_close = 1; } if (open_flags & O_BINARY) new_file->binary = 1; new_file->fd = tor_open_cloexec(open_name, open_flags, mode); if (new_file->fd < 0) { log_warn(LD_FS, "Couldn't open \"%s\" (%s) for writing: %s", open_name, fname, strerror(errno)); goto err; } if (append) { if (tor_fd_seekend(new_file->fd) < 0) { log_warn(LD_FS, "Couldn't seek to end of file \"%s\": %s", open_name, strerror(errno)); goto err; } } *data_out = new_file; return new_file->fd; err: if (new_file->fd >= 0) close(new_file->fd); *data_out = NULL; tor_free(new_file->filename); tor_free(new_file->tempname); tor_free(new_file); return -1; } /** Given file_data from start_writing_to_file(), return a stdio FILE* * that can be used to write to the same file. The caller should not mix * stdio calls with non-stdio calls. */ FILE * fdopen_file(open_file_t *file_data) { tor_assert(file_data); if (file_data->stdio_file) return file_data->stdio_file; tor_assert(file_data->fd >= 0); if (!(file_data->stdio_file = fdopen(file_data->fd, file_data->binary?"ab":"a"))) { log_warn(LD_FS, "Couldn't fdopen \"%s\" [%d]: %s", file_data->filename, file_data->fd, strerror(errno)); } return file_data->stdio_file; } /** Combines start_writing_to_file with fdopen_file(): arguments are as * for start_writing_to_file, but */ FILE * start_writing_to_stdio_file(const char *fname, int open_flags, int mode, open_file_t **data_out) { FILE *res; if (start_writing_to_file(fname, open_flags, mode, data_out)<0) return NULL; if (!(res = fdopen_file(*data_out))) { abort_writing_to_file(*data_out); *data_out = NULL; } return res; } /** Helper function: close and free the underlying file and memory in * file_data. If we were writing into a temporary file, then delete * that file (if abort_write is true) or replaces the target file with * the temporary file (if abort_write is false). */ static int finish_writing_to_file_impl(open_file_t *file_data, int abort_write) { int r = 0; tor_assert(file_data && file_data->filename); if (file_data->stdio_file) { if (fclose(file_data->stdio_file)) { log_warn(LD_FS, "Error closing \"%s\": %s", file_data->filename, strerror(errno)); abort_write = r = -1; } } else if (file_data->fd >= 0 && close(file_data->fd) < 0) { log_warn(LD_FS, "Error flushing \"%s\": %s", file_data->filename, strerror(errno)); abort_write = r = -1; } if (file_data->rename_on_close) { tor_assert(file_data->tempname && file_data->filename); if (abort_write) { unlink(file_data->tempname); } else { tor_assert(strcmp(file_data->filename, file_data->tempname)); if (replace_file(file_data->tempname, file_data->filename)) { log_warn(LD_FS, "Error replacing \"%s\": %s", file_data->filename, strerror(errno)); r = -1; } } } tor_free(file_data->filename); tor_free(file_data->tempname); tor_free(file_data); return r; } /** Finish writing to file_data: close the file handle, free memory as * needed, and if using a temporary file, replace the original file with * the temporary file. */ int finish_writing_to_file(open_file_t *file_data) { return finish_writing_to_file_impl(file_data, 0); } /** Finish writing to file_data: close the file handle, free memory as * needed, and if using a temporary file, delete it. */ int abort_writing_to_file(open_file_t *file_data) { return finish_writing_to_file_impl(file_data, 1); } /** Helper: given a set of flags as passed to open(2), open the file * fname and write all the sized_chunk_t structs in chunks to * the file. Do so as atomically as possible e.g. by opening temp files and * renaming. */ static int write_chunks_to_file_impl(const char *fname, const smartlist_t *chunks, int open_flags) { open_file_t *file = NULL; int fd; ssize_t result; fd = start_writing_to_file(fname, open_flags, 0600, &file); if (fd<0) return -1; SMARTLIST_FOREACH(chunks, sized_chunk_t *, chunk, { result = write_all(fd, chunk->bytes, chunk->len, 0); if (result < 0) { log_warn(LD_FS, "Error writing to \"%s\": %s", fname, strerror(errno)); goto err; } tor_assert((size_t)result == chunk->len); }); return finish_writing_to_file(file); err: abort_writing_to_file(file); return -1; } /** Given a smartlist of sized_chunk_t, write them atomically to a file * fname, overwriting or creating the file as necessary. */ int write_chunks_to_file(const char *fname, const smartlist_t *chunks, int bin) { int flags = OPEN_FLAGS_REPLACE|(bin?O_BINARY:O_TEXT); return write_chunks_to_file_impl(fname, chunks, flags); } /** As write_str_to_file, but does not assume a NUL-terminated * string. Instead, we write len bytes, starting at str. */ int write_bytes_to_file(const char *fname, const char *str, size_t len, int bin) { int flags = OPEN_FLAGS_REPLACE|(bin?O_BINARY:O_TEXT); int r; sized_chunk_t c = { str, len }; smartlist_t *chunks = smartlist_create(); smartlist_add(chunks, &c); r = write_chunks_to_file_impl(fname, chunks, flags); smartlist_free(chunks); return r; } /** As write_bytes_to_file, but if the file already exists, append the bytes * to the end of the file instead of overwriting it. */ int append_bytes_to_file(const char *fname, const char *str, size_t len, int bin) { int flags = OPEN_FLAGS_APPEND|(bin?O_BINARY:O_TEXT); int r; sized_chunk_t c = { str, len }; smartlist_t *chunks = smartlist_create(); smartlist_add(chunks, &c); r = write_chunks_to_file_impl(fname, chunks, flags); smartlist_free(chunks); return r; } /** Read the contents of filename into a newly allocated * string; return the string on success or NULL on failure. * * If stat_out is provided, store the result of stat()ing the * file into stat_out. * * If flags & RFTS_BIN, open the file in binary mode. * If flags & RFTS_IGNORE_MISSING, don't warn if the file * doesn't exist. */ /* * This function may return an erroneous result if the file * is modified while it is running, but must not crash or overflow. * Right now, the error case occurs when the file length grows between * the call to stat and the call to read_all: the resulting string will * be truncated. */ char * read_file_to_str(const char *filename, int flags, struct stat *stat_out) { int fd; /* router file */ struct stat statbuf; char *string; ssize_t r; int bin = flags & RFTS_BIN; tor_assert(filename); fd = tor_open_cloexec(filename,O_RDONLY|(bin?O_BINARY:O_TEXT),0); if (fd<0) { int severity = LOG_WARN; int save_errno = errno; if (errno == ENOENT && (flags & RFTS_IGNORE_MISSING)) severity = LOG_INFO; log_fn(severity, LD_FS,"Could not open \"%s\": %s",filename, strerror(errno)); errno = save_errno; return NULL; } if (fstat(fd, &statbuf)<0) { int save_errno = errno; close(fd); log_warn(LD_FS,"Could not fstat \"%s\".",filename); errno = save_errno; return NULL; } if ((uint64_t)(statbuf.st_size)+1 >= SIZE_T_CEILING) return NULL; string = tor_malloc((size_t)(statbuf.st_size+1)); r = read_all(fd,string,(size_t)statbuf.st_size,0); if (r<0) { int save_errno = errno; log_warn(LD_FS,"Error reading from file \"%s\": %s", filename, strerror(errno)); tor_free(string); close(fd); errno = save_errno; return NULL; } string[r] = '\0'; /* NUL-terminate the result. */ #ifdef MS_WINDOWS if (!bin && strchr(string, '\r')) { log_debug(LD_FS, "We didn't convert CRLF to LF as well as we hoped " "when reading %s. Coping.", filename); tor_strstrip(string, "\r"); r = strlen(string); } if (!bin) { statbuf.st_size = (size_t) r; } else #endif if (r != statbuf.st_size) { /* Unless we're using text mode on win32, we'd better have an exact * match for size. */ int save_errno = errno; log_warn(LD_FS,"Could read only %d of %ld bytes of file \"%s\".", (int)r, (long)statbuf.st_size,filename); tor_free(string); close(fd); errno = save_errno; return NULL; } close(fd); if (stat_out) { memcpy(stat_out, &statbuf, sizeof(struct stat)); } return string; } #define TOR_ISODIGIT(c) ('0' <= (c) && (c) <= '7') /** Given a c-style double-quoted escaped string in s, extract and * decode its contents into a newly allocated string. On success, assign this * string to *result, assign its length to size_out (if * provided), and return a pointer to the position in s immediately * after the string. On failure, return NULL. */ static const char * unescape_string(const char *s, char **result, size_t *size_out) { const char *cp; char *out; if (s[0] != '\"') return NULL; cp = s+1; while (1) { switch (*cp) { case '\0': case '\n': return NULL; case '\"': goto end_of_loop; case '\\': if ((cp[1] == 'x' || cp[1] == 'X') && TOR_ISXDIGIT(cp[2]) && TOR_ISXDIGIT(cp[3])) { cp += 4; } else if (TOR_ISODIGIT(cp[1])) { cp += 2; if (TOR_ISODIGIT(*cp)) ++cp; if (TOR_ISODIGIT(*cp)) ++cp; } else if (cp[1]) { cp += 2; } else { return NULL; } break; default: ++cp; break; } } end_of_loop: out = *result = tor_malloc(cp-s + 1); cp = s+1; while (1) { switch (*cp) { case '\"': *out = '\0'; if (size_out) *size_out = out - *result; return cp+1; case '\0': tor_fragile_assert(); tor_free(*result); return NULL; case '\\': switch (cp[1]) { case 'n': *out++ = '\n'; cp += 2; break; case 'r': *out++ = '\r'; cp += 2; break; case 't': *out++ = '\t'; cp += 2; break; case 'x': case 'X': *out++ = ((hex_decode_digit(cp[2])<<4) + hex_decode_digit(cp[3])); cp += 4; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { int n = cp[1]-'0'; cp += 2; if (TOR_ISODIGIT(*cp)) { n = n*8 + *cp-'0'; cp++; } if (TOR_ISODIGIT(*cp)) { n = n*8 + *cp-'0'; cp++; } if (n > 255) { tor_free(*result); return NULL; } *out++ = (char)n; } break; case '\'': case '\"': case '\\': case '\?': *out++ = cp[1]; cp += 2; break; default: tor_free(*result); return NULL; } break; default: *out++ = *cp++; } } } /** Given a string containing part of a configuration file or similar format, * advance past comments and whitespace and try to parse a single line. If we * parse a line successfully, set *key_out to a new string holding the * key portion and *value_out to a new string holding the value portion * of the line, and return a pointer to the start of the next line. If we run * out of data, return a pointer to the end of the string. If we encounter an * error, return NULL. */ const char * parse_config_line_from_str(const char *line, char **key_out, char **value_out) { /* I believe the file format here is supposed to be: FILE = (EMPTYLINE | LINE)* (EMPTYLASTLINE | LASTLINE)? EMPTYLASTLINE = SPACE* | COMMENT EMPTYLINE = EMPTYLASTLINE NL SPACE = ' ' | '\r' | '\t' COMMENT = '#' NOT-NL* NOT-NL = Any character except '\n' NL = '\n' LASTLINE = SPACE* KEY SPACE* VALUES LINE = LASTLINE NL KEY = KEYCHAR+ KEYCHAR = Any character except ' ', '\r', '\n', '\t', '#', "\" VALUES = QUOTEDVALUE | NORMALVALUE QUOTEDVALUE = QUOTE QVITEM* QUOTE EOLSPACE? QUOTE = '"' QVCHAR = KEYCHAR | ESC ('n' | 't' | 'r' | '"' | ESC |'\'' | OCTAL | HEX) ESC = "\\" OCTAL = ODIGIT (ODIGIT ODIGIT?)? HEX = ('x' | 'X') HEXDIGIT HEXDIGIT ODIGIT = '0' .. '7' HEXDIGIT = '0'..'9' | 'a' .. 'f' | 'A' .. 'F' EOLSPACE = SPACE* COMMENT? NORMALVALUE = (VALCHAR | ESC ESC_IGNORE | CONTINUATION)* EOLSPACE? VALCHAR = Any character except ESC, '#', and '\n' ESC_IGNORE = Any character except '#' or '\n' CONTINUATION = ESC NL ( COMMENT NL )* */ const char *key, *val, *cp; int continuation = 0; tor_assert(key_out); tor_assert(value_out); *key_out = *value_out = NULL; key = val = NULL; /* Skip until the first keyword. */ while (1) { while (TOR_ISSPACE(*line)) ++line; if (*line == '#') { while (*line && *line != '\n') ++line; } else { break; } } if (!*line) { /* End of string? */ *key_out = *value_out = NULL; return line; } /* Skip until the next space or \ followed by newline. */ key = line; while (*line && !TOR_ISSPACE(*line) && *line != '#' && ! (line[0] == '\\' && line[1] == '\n')) ++line; *key_out = tor_strndup(key, line-key); /* Skip until the value. */ while (*line == ' ' || *line == '\t') ++line; val = line; /* Find the end of the line. */ if (*line == '\"') { // XXX No continuation handling is done here if (!(line = unescape_string(line, value_out, NULL))) return NULL; while (*line == ' ' || *line == '\t') ++line; if (*line && *line != '#' && *line != '\n') return NULL; } else { /* Look for the end of the line. */ while (*line && *line != '\n' && (*line != '#' || continuation)) { if (*line == '\\' && line[1] == '\n') { continuation = 1; line += 2; } else if (*line == '#') { do { ++line; } while (*line && *line != '\n'); if (*line == '\n') ++line; } else { ++line; } } if (*line == '\n') { cp = line++; } else { cp = line; } /* Now back cp up to be the last nonspace character */ while (cp>val && TOR_ISSPACE(*(cp-1))) --cp; tor_assert(cp >= val); /* Now copy out and decode the value. */ *value_out = tor_strndup(val, cp-val); if (continuation) { char *v_out, *v_in; v_out = v_in = *value_out; while (*v_in) { if (*v_in == '#') { do { ++v_in; } while (*v_in && *v_in != '\n'); if (*v_in == '\n') ++v_in; } else if (v_in[0] == '\\' && v_in[1] == '\n') { v_in += 2; } else { *v_out++ = *v_in++; } } *v_out = '\0'; } } if (*line == '#') { do { ++line; } while (*line && *line != '\n'); } while (TOR_ISSPACE(*line)) ++line; return line; } /** Expand any homedir prefix on filename; return a newly allocated * string. */ char * expand_filename(const char *filename) { tor_assert(filename); #ifdef MS_WINDOWS return tor_strdup(filename); #else if (*filename == '~') { char *home, *result=NULL; const char *rest; if (filename[1] == '/' || filename[1] == '\0') { home = getenv("HOME"); if (!home) { log_warn(LD_CONFIG, "Couldn't find $HOME environment variable while " "expanding \"%s\"; defaulting to \"\".", filename); home = tor_strdup(""); } else { home = tor_strdup(home); } rest = strlen(filename)>=2?(filename+2):""; } else { #ifdef HAVE_PWD_H char *username, *slash; slash = strchr(filename, '/'); if (slash) username = tor_strndup(filename+1,slash-filename-1); else username = tor_strdup(filename+1); if (!(home = get_user_homedir(username))) { log_warn(LD_CONFIG,"Couldn't get homedir for \"%s\"",username); tor_free(username); return NULL; } tor_free(username); rest = slash ? (slash+1) : ""; #else log_warn(LD_CONFIG, "Couldn't expend homedir on system without pwd.h"); return tor_strdup(filename); #endif } tor_assert(home); /* Remove trailing slash. */ if (strlen(home)>1 && !strcmpend(home,PATH_SEPARATOR)) { home[strlen(home)-1] = '\0'; } tor_asprintf(&result,"%s"PATH_SEPARATOR"%s",home,rest); tor_free(home); return result; } else { return tor_strdup(filename); } #endif } #define MAX_SCANF_WIDTH 9999 /** Helper: given an ASCII-encoded decimal digit, return its numeric value. * NOTE: requires that its input be in-bounds. */ static int digit_to_num(char d) { int num = ((int)d) - (int)'0'; tor_assert(num <= 9 && num >= 0); return num; } /** Helper: Read an unsigned int from *bufp of up to width * characters. (Handle arbitrary width if width is less than 0.) On * success, store the result in out, advance bufp to the next * character, and return 0. On failure, return -1. */ static int scan_unsigned(const char **bufp, unsigned *out, int width, int base) { unsigned result = 0; int scanned_so_far = 0; const int hex = base==16; tor_assert(base == 10 || base == 16); if (!bufp || !*bufp || !out) return -1; if (width<0) width=MAX_SCANF_WIDTH; while (**bufp && (hex?TOR_ISXDIGIT(**bufp):TOR_ISDIGIT(**bufp)) && scanned_so_far < width) { int digit = hex?hex_decode_digit(*(*bufp)++):digit_to_num(*(*bufp)++); unsigned new_result = result * base + digit; if (new_result > UINT32_MAX || new_result < result) return -1; /* over/underflow. */ result = new_result; ++scanned_so_far; } if (!scanned_so_far) /* No actual digits scanned */ return -1; *out = result; return 0; } /** Helper: copy up to width non-space characters from bufp to * out. Make sure out is nul-terminated. Advance bufp * to the next non-space character or the EOS. */ static int scan_string(const char **bufp, char *out, int width) { int scanned_so_far = 0; if (!bufp || !out || width < 0) return -1; while (**bufp && ! TOR_ISSPACE(**bufp) && scanned_so_far < width) { *out++ = *(*bufp)++; ++scanned_so_far; } *out = '\0'; return 0; } /** Locale-independent, minimal, no-surprises scanf variant, accepting only a * restricted pattern format. For more info on what it supports, see * tor_sscanf() documentation. */ int tor_vsscanf(const char *buf, const char *pattern, va_list ap) { int n_matched = 0; while (*pattern) { if (*pattern != '%') { if (*buf == *pattern) { ++buf; ++pattern; continue; } else { return n_matched; } } else { int width = -1; ++pattern; if (TOR_ISDIGIT(*pattern)) { width = digit_to_num(*pattern++); while (TOR_ISDIGIT(*pattern)) { width *= 10; width += digit_to_num(*pattern++); if (width > MAX_SCANF_WIDTH) return -1; } if (!width) /* No zero-width things. */ return -1; } if (*pattern == 'u' || *pattern == 'x') { unsigned *u = va_arg(ap, unsigned *); const int base = (*pattern == 'u') ? 10 : 16; if (!*buf) return n_matched; if (scan_unsigned(&buf, u, width, base)<0) return n_matched; ++pattern; ++n_matched; } else if (*pattern == 's') { char *s = va_arg(ap, char *); if (width < 0) return -1; if (scan_string(&buf, s, width)<0) return n_matched; ++pattern; ++n_matched; } else if (*pattern == 'c') { char *ch = va_arg(ap, char *); if (width != -1) return -1; if (!*buf) return n_matched; *ch = *buf++; ++pattern; ++n_matched; } else if (*pattern == '%') { if (*buf != '%') return -1; ++buf; ++pattern; } else { return -1; /* Unrecognized pattern component. */ } } } return n_matched; } /** Minimal sscanf replacement: parse buf according to pattern * and store the results in the corresponding argument fields. Differs from * sscanf in that it: Only handles %u and %x and %Ns. Does not handle * arbitrarily long widths. %u and %x do not consume any space. Is * locale-independent. Returns -1 on malformed patterns. * * (As with other locale-independent functions, we need this to parse data that * is in ASCII without worrying that the C library's locale-handling will make * miscellaneous characters look like numbers, spaces, and so on.) */ int tor_sscanf(const char *buf, const char *pattern, ...) { int r; va_list ap; va_start(ap, pattern); r = tor_vsscanf(buf, pattern, ap); va_end(ap); return r; } /** Return a new list containing the filenames in the directory dirname. * Return NULL on error or if dirname is not a directory. */ smartlist_t * tor_listdir(const char *dirname) { smartlist_t *result; #ifdef MS_WINDOWS char *pattern; TCHAR tpattern[MAX_PATH] = {0}; char name[MAX_PATH] = {0}; HANDLE handle; WIN32_FIND_DATA findData; size_t pattern_len = strlen(dirname)+16; pattern = tor_malloc(pattern_len); tor_snprintf(pattern, pattern_len, "%s\\*", dirname); #ifdef UNICODE mbstowcs(tpattern,pattern,MAX_PATH); #else strlcpy(tpattern, pattern, MAX_PATH); #endif if (INVALID_HANDLE_VALUE == (handle = FindFirstFile(tpattern, &findData))) { tor_free(pattern); return NULL; } result = smartlist_create(); while (1) { #ifdef UNICODE wcstombs(name,findData.cFileName,MAX_PATH); #else strlcpy(name,findData.cFileName,sizeof(name)); #endif if (strcmp(name, ".") && strcmp(name, "..")) { smartlist_add(result, tor_strdup(name)); } if (!FindNextFile(handle, &findData)) { DWORD err; if ((err = GetLastError()) != ERROR_NO_MORE_FILES) { char *errstr = format_win32_error(err); log_warn(LD_FS, "Error reading directory '%s': %s", dirname, errstr); tor_free(errstr); } break; } } FindClose(handle); tor_free(pattern); #else DIR *d; struct dirent *de; if (!(d = opendir(dirname))) return NULL; result = smartlist_create(); while ((de = readdir(d))) { if (!strcmp(de->d_name, ".") || !strcmp(de->d_name, "..")) continue; smartlist_add(result, tor_strdup(de->d_name)); } closedir(d); #endif return result; } /** Return true iff filename is a relative path. */ int path_is_relative(const char *filename) { if (filename && filename[0] == '/') return 0; #ifdef MS_WINDOWS else if (filename && filename[0] == '\\') return 0; else if (filename && strlen(filename)>3 && TOR_ISALPHA(filename[0]) && filename[1] == ':' && filename[2] == '\\') return 0; #endif else return 1; } /* ===== * Process helpers * ===== */ #ifndef MS_WINDOWS /* Based on code contributed by christian grothoff */ /** True iff we've called start_daemon(). */ static int start_daemon_called = 0; /** True iff we've called finish_daemon(). */ static int finish_daemon_called = 0; /** Socketpair used to communicate between parent and child process while * daemonizing. */ static int daemon_filedes[2]; /** Start putting the process into daemon mode: fork and drop all resources * except standard fds. The parent process never returns, but stays around * until finish_daemon is called. (Note: it's safe to call this more * than once: calls after the first are ignored.) */ void start_daemon(void) { pid_t pid; if (start_daemon_called) return; start_daemon_called = 1; if (pipe(daemon_filedes)) { log_err(LD_GENERAL,"pipe failed; exiting. Error was %s", strerror(errno)); exit(1); } pid = fork(); if (pid < 0) { log_err(LD_GENERAL,"fork failed. Exiting."); exit(1); } if (pid) { /* Parent */ int ok; char c; close(daemon_filedes[1]); /* we only read */ ok = -1; while (0 < read(daemon_filedes[0], &c, sizeof(char))) { if (c == '.') ok = 1; } fflush(stdout); if (ok == 1) exit(0); else exit(1); /* child reported error */ } else { /* Child */ close(daemon_filedes[0]); /* we only write */ pid = setsid(); /* Detach from controlling terminal */ /* * Fork one more time, so the parent (the session group leader) can exit. * This means that we, as a non-session group leader, can never regain a * controlling terminal. This part is recommended by Stevens's * _Advanced Programming in the Unix Environment_. */ if (fork() != 0) { exit(0); } set_main_thread(); /* We are now the main thread. */ return; } } /** Finish putting the process into daemon mode: drop standard fds, and tell * the parent process to exit. (Note: it's safe to call this more than once: * calls after the first are ignored. Calls start_daemon first if it hasn't * been called already.) */ void finish_daemon(const char *desired_cwd) { int nullfd; char c = '.'; if (finish_daemon_called) return; if (!start_daemon_called) start_daemon(); finish_daemon_called = 1; if (!desired_cwd) desired_cwd = "/"; /* Don't hold the wrong FS mounted */ if (chdir(desired_cwd) < 0) { log_err(LD_GENERAL,"chdir to \"%s\" failed. Exiting.",desired_cwd); exit(1); } nullfd = tor_open_cloexec("/dev/null", O_RDWR, 0); if (nullfd < 0) { log_err(LD_GENERAL,"/dev/null can't be opened. Exiting."); exit(1); } /* close fds linking to invoking terminal, but * close usual incoming fds, but redirect them somewhere * useful so the fds don't get reallocated elsewhere. */ if (dup2(nullfd,0) < 0 || dup2(nullfd,1) < 0 || dup2(nullfd,2) < 0) { log_err(LD_GENERAL,"dup2 failed. Exiting."); exit(1); } if (nullfd > 2) close(nullfd); /* signal success */ if (write(daemon_filedes[1], &c, sizeof(char)) != sizeof(char)) { log_err(LD_GENERAL,"write failed. Exiting."); } close(daemon_filedes[1]); } #else /* defined(MS_WINDOWS) */ void start_daemon(void) { } void finish_daemon(const char *cp) { (void)cp; } #endif /** Write the current process ID, followed by NL, into filename. */ void write_pidfile(char *filename) { FILE *pidfile; if ((pidfile = fopen(filename, "w")) == NULL) { log_warn(LD_FS, "Unable to open \"%s\" for writing: %s", filename, strerror(errno)); } else { #ifdef MS_WINDOWS fprintf(pidfile, "%d\n", (int)_getpid()); #else fprintf(pidfile, "%d\n", (int)getpid()); #endif fclose(pidfile); } } #ifdef MS_WINDOWS HANDLE load_windows_system_library(const TCHAR *library_name) { TCHAR path[MAX_PATH]; unsigned n; n = GetSystemDirectory(path, MAX_PATH); if (n == 0 || n + _tcslen(library_name) + 2 >= MAX_PATH) return 0; _tcscat(path, TEXT("\\")); _tcscat(path, library_name); return LoadLibrary(path); } #endif /** Format child_state and saved_errno as a hex string placed in * hex_errno. Called between fork and _exit, so must be signal-handler * safe. * * hex_errno must have at least HEX_ERRNO_SIZE bytes available. * * The format of hex_errno is: "CHILD_STATE/ERRNO\n", left-padded * with spaces. Note that there is no trailing \0. CHILD_STATE indicates where * in the processs of starting the child process did the failure occur (see * CHILD_STATE_* macros for definition), and SAVED_ERRNO is the value of * errno when the failure occurred. */ void format_helper_exit_status(unsigned char child_state, int saved_errno, char *hex_errno) { unsigned int unsigned_errno; char *cur; size_t i; /* Fill hex_errno with spaces, and a trailing newline (memset may not be signal handler safe, so we can't use it) */ for (i = 0; i < (HEX_ERRNO_SIZE - 1); i++) hex_errno[i] = ' '; hex_errno[HEX_ERRNO_SIZE - 1] = '\n'; /* Convert errno to be unsigned for hex conversion */ if (saved_errno < 0) { unsigned_errno = (unsigned int) -saved_errno; } else { unsigned_errno = (unsigned int) saved_errno; } /* Convert errno to hex (start before \n) */ cur = hex_errno + HEX_ERRNO_SIZE - 2; /* Check for overflow on first iteration of the loop */ if (cur < hex_errno) return; do { *cur-- = "0123456789ABCDEF"[unsigned_errno % 16]; unsigned_errno /= 16; } while (unsigned_errno != 0 && cur >= hex_errno); /* Prepend the minus sign if errno was negative */ if (saved_errno < 0 && cur >= hex_errno) *cur-- = '-'; /* Leave a gap */ if (cur >= hex_errno) *cur-- = '/'; /* Check for overflow on first iteration of the loop */ if (cur < hex_errno) return; /* Convert child_state to hex */ do { *cur-- = "0123456789ABCDEF"[child_state % 16]; child_state /= 16; } while (child_state != 0 && cur >= hex_errno); } /* Maximum number of file descriptors, if we cannot get it via sysconf() */ #define DEFAULT_MAX_FD 256 #define CHILD_STATE_INIT 0 #define CHILD_STATE_PIPE 1 #define CHILD_STATE_MAXFD 2 #define CHILD_STATE_FORK 3 #define CHILD_STATE_DUPOUT 4 #define CHILD_STATE_DUPERR 5 #define CHILD_STATE_REDIRECT 6 #define CHILD_STATE_CLOSEFD 7 #define CHILD_STATE_EXEC 8 #define CHILD_STATE_FAILEXEC 9 #define SPAWN_ERROR_MESSAGE "ERR: Failed to spawn background process - code " /** Start a program in the background. If filename contains a '/', * then it will be treated as an absolute or relative path. Otherwise the * system path will be searched for filename. The strings in * argv will be passed as the command line arguments of the child * program (following convention, argv[0] should normally be the filename of * the executable). The last element of argv must be NULL. If the child * program is launched, the PID will be returned and stdout_read and * stdout_err will be set to file descriptors from which the stdout * and stderr, respectively, output of the child program can be read, and the * stdin of the child process shall be set to /dev/null. Otherwise returns * -1. Some parts of this code are based on the POSIX subprocess module from * Python. */ int tor_spawn_background(const char *const filename, int *stdout_read, int *stderr_read, const char **argv) { #ifdef MS_WINDOWS (void) filename; (void) stdout_read; (void) stderr_read; (void) argv; log_warn(LD_BUG, "not yet implemented on Windows."); return -1; #else pid_t pid; int stdout_pipe[2]; int stderr_pipe[2]; int fd, retval; ssize_t nbytes; const char *error_message = SPAWN_ERROR_MESSAGE; size_t error_message_length; /* Represents where in the process of spawning the program is; this is used for printing out the error message */ unsigned char child_state = CHILD_STATE_INIT; char hex_errno[HEX_ERRNO_SIZE]; static int max_fd = -1; /* We do the strlen here because strlen() is not signal handler safe, and we are not allowed to use unsafe functions between fork and exec */ error_message_length = strlen(error_message); child_state = CHILD_STATE_PIPE; /* Set up pipe for redirecting stdout and stderr of child */ retval = pipe(stdout_pipe); if (-1 == retval) { log_warn(LD_GENERAL, "Failed to set up pipe for stdout communication with child process: %s", strerror(errno)); return -1; } retval = pipe(stderr_pipe); if (-1 == retval) { log_warn(LD_GENERAL, "Failed to set up pipe for stderr communication with child process: %s", strerror(errno)); return -1; } child_state = CHILD_STATE_MAXFD; #ifdef _SC_OPEN_MAX if (-1 != max_fd) { max_fd = (int) sysconf(_SC_OPEN_MAX); if (max_fd == -1) max_fd = DEFAULT_MAX_FD; log_warn(LD_GENERAL, "Cannot find maximum file descriptor, assuming %d", max_fd); } #else max_fd = DEFAULT_MAX_FD; #endif child_state = CHILD_STATE_FORK; pid = fork(); if (0 == pid) { /* In child */ child_state = CHILD_STATE_DUPOUT; /* Link child stdout to the write end of the pipe */ retval = dup2(stdout_pipe[1], STDOUT_FILENO); if (-1 == retval) goto error; child_state = CHILD_STATE_DUPERR; /* Link child stderr to the write end of the pipe */ retval = dup2(stderr_pipe[1], STDERR_FILENO); if (-1 == retval) goto error; child_state = CHILD_STATE_REDIRECT; /* Link stdin to /dev/null */ fd = open("/dev/null", O_RDONLY); /* NOT cloexec, obviously. */ if (fd != -1) dup2(fd, STDIN_FILENO); else goto error; child_state = CHILD_STATE_CLOSEFD; close(stderr_pipe[0]); close(stderr_pipe[1]); close(stdout_pipe[0]); close(stdout_pipe[1]); close(fd); /* Close all other fds, including the read end of the pipe */ /* XXX: We should now be doing enough FD_CLOEXEC setting to make * this needless. */ for (fd = STDERR_FILENO + 1; fd < max_fd; fd++) { close(fd); } child_state = CHILD_STATE_EXEC; /* Call the requested program. We need the cast because execvp doesn't define argv as const, even though it does not modify the arguments */ execvp(filename, (char *const *) argv); /* If we got here, the exec or open(/dev/null) failed */ child_state = CHILD_STATE_FAILEXEC; error: /* XXX: are we leaking fds from the pipe? */ format_helper_exit_status(child_state, errno, hex_errno); /* Write the error message. GCC requires that we check the return value, but there is nothing we can do if it fails */ nbytes = write(STDOUT_FILENO, error_message, error_message_length); nbytes = write(STDOUT_FILENO, hex_errno, sizeof(hex_errno)); (void) nbytes; _exit(255); return -1; /* Never reached, but avoids compiler warning */ } /* In parent */ if (-1 == pid) { log_warn(LD_GENERAL, "Failed to fork child process: %s", strerror(errno)); close(stdout_pipe[0]); close(stdout_pipe[1]); close(stderr_pipe[0]); close(stderr_pipe[1]); return -1; } /* Return read end of the pipes to caller, and close write end */ *stdout_read = stdout_pipe[0]; retval = close(stdout_pipe[1]); if (-1 == retval) { log_warn(LD_GENERAL, "Failed to close write end of stdout pipe in parent process: %s", strerror(errno)); /* Do not return -1, because the child is running, so the parent needs to know about the pid in order to reap it later */ } *stderr_read = stderr_pipe[0]; retval = close(stderr_pipe[1]); if (-1 == retval) { log_warn(LD_GENERAL, "Failed to close write end of stderr pipe in parent process: %s", strerror(errno)); /* Do not return -1, because the child is running, so the parent needs to know about the pid in order to reap it later */ } return pid; #endif } /** Read from stream, and send lines to log at the specified log level. * Returns 1 if stream is closed normally, -1 if there is a error reading, and * 0 otherwise. Handles lines from tor-fw-helper and * tor_spawn_background() specially. */ static int log_from_pipe(FILE *stream, int severity, const char *executable, int *child_status) { char buf[256]; for (;;) { char *retval; retval = fgets(buf, sizeof(buf), stream); if (NULL == retval) { if (feof(stream)) { /* Program has closed stream (probably it exited) */ /* TODO: check error */ fclose(stream); return 1; } else { if (EAGAIN == errno) { /* Nothing more to read, try again next time */ return 0; } else { /* There was a problem, abandon this child process */ fclose(stream); return -1; } } } else { /* We have some data, log it and keep asking for more */ size_t len; len = strlen(buf); if (buf[len - 1] == '\n') { /* Remove the trailing newline */ buf[len - 1] = '\0'; } else { /* No newline; check whether we overflowed the buffer */ if (!feof(stream)) log_warn(LD_GENERAL, "Line from port forwarding helper was truncated: %s", buf); /* TODO: What to do with this error? */ } /* Check if buf starts with SPAWN_ERROR_MESSAGE */ if (strcmpstart(buf, SPAWN_ERROR_MESSAGE) == 0) { /* Parse error message */ int retval, child_state, saved_errno; retval = tor_sscanf(buf, SPAWN_ERROR_MESSAGE "%x/%x", &child_state, &saved_errno); if (retval == 2) { log_warn(LD_GENERAL, "Failed to start child process \"%s\" in state %d: %s", executable, child_state, strerror(saved_errno)); if (child_status) *child_status = 1; } else { /* Failed to parse message from child process, log it as a warning */ log_warn(LD_GENERAL, "Unexpected message from port forwarding helper \"%s\": %s", executable, buf); } } else { log_fn(severity, LD_GENERAL, "Port forwarding helper says: %s", buf); } } } /* We should never get here */ return -1; } void tor_check_port_forwarding(const char *filename, int dir_port, int or_port, time_t now) { #ifdef MS_WINDOWS (void) filename; (void) dir_port; (void) or_port; (void) now; (void) tor_spawn_background; (void) log_from_pipe; log_warn(LD_GENERAL, "Sorry, port forwarding is not yet supported " "on windows."); #else /* When fw-helper succeeds, how long do we wait until running it again */ #define TIME_TO_EXEC_FWHELPER_SUCCESS 300 /* When fw-helper fails, how long do we wait until running it again */ #define TIME_TO_EXEC_FWHELPER_FAIL 60 static int child_pid = -1; static FILE *stdout_read = NULL; static FILE *stderr_read = NULL; static time_t time_to_run_helper = 0; int stdout_status, stderr_status, retval; const char *argv[10]; char s_dirport[6], s_orport[6]; tor_assert(filename); /* Set up command line for tor-fw-helper */ snprintf(s_dirport, sizeof s_dirport, "%d", dir_port); snprintf(s_orport, sizeof s_orport, "%d", or_port); /* TODO: Allow different internal and external ports */ argv[0] = filename; argv[1] = "--internal-or-port"; argv[2] = s_orport; argv[3] = "--external-or-port"; argv[4] = s_orport; argv[5] = "--internal-dir-port"; argv[6] = s_dirport; argv[7] = "--external-dir-port"; argv[8] = s_dirport; argv[9] = NULL; /* Start the child, if it is not already running */ if (-1 == child_pid && time_to_run_helper < now) { int fd_out=-1, fd_err=-1; /* Assume tor-fw-helper will succeed, start it later*/ time_to_run_helper = now + TIME_TO_EXEC_FWHELPER_SUCCESS; child_pid = tor_spawn_background(filename, &fd_out, &fd_err, argv); if (child_pid < 0) { log_warn(LD_GENERAL, "Failed to start port forwarding helper %s", filename); child_pid = -1; return; } /* Set stdout/stderr pipes to be non-blocking */ fcntl(fd_out, F_SETFL, O_NONBLOCK); fcntl(fd_err, F_SETFL, O_NONBLOCK); /* Open the buffered IO streams */ stdout_read = fdopen(fd_out, "r"); stderr_read = fdopen(fd_err, "r"); log_info(LD_GENERAL, "Started port forwarding helper (%s) with pid %d", filename, child_pid); } /* If child is running, read from its stdout and stderr) */ if (child_pid > 0) { /* Read from stdout/stderr and log result */ retval = 0; stdout_status = log_from_pipe(stdout_read, LOG_INFO, filename, &retval); stderr_status = log_from_pipe(stderr_read, LOG_WARN, filename, &retval); if (retval) { /* There was a problem in the child process */ time_to_run_helper = now + TIME_TO_EXEC_FWHELPER_FAIL; } /* Combine the two statuses in order of severity */ if (-1 == stdout_status || -1 == stderr_status) /* There was a failure */ retval = -1; else if (1 == stdout_status || 1 == stderr_status) /* stdout or stderr was closed */ retval = 1; else /* Both are fine */ retval = 0; /* If either pipe indicates a failure, act on it */ if (0 != retval) { if (1 == retval) { log_info(LD_GENERAL, "Port forwarding helper terminated"); } else { log_warn(LD_GENERAL, "Failed to read from port forwarding helper"); } /* TODO: The child might not actually be finished (maybe it failed or closed stdout/stderr), so maybe we shouldn't start another? */ child_pid = -1; } } #endif }