/* Copyright 2001,2002,2003 Roger Dingledine, Matej Pfajfar. */ /* See LICENSE for licensing information */ /* $Id$ */ #include "../or/or.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto.h" #include "log.h" #include "aes.h" #ifdef MS_WINDOWS #include #endif #if OPENSSL_VERSION_NUMBER < 0x00905000l #error "We require openssl >= 0.9.5" #elif OPENSSL_VERSION_NUMBER < 0x00906000l #define OPENSSL_095 #endif /* * Certain functions that return a success code in OpenSSL 0.9.6 return void * (and don't indicate errors) in OpenSSL version 0.9.5. * * [OpenSSL 0.9.5 matters, because it ships with Redhat 6.2.] */ #ifdef OPENSSL_095 #define RETURN_SSL_OUTCOME(exp) (exp); return 0 #else #define RETURN_SSL_OUTCOME(exp) return !(exp) #endif struct crypto_pk_env_t { int type; int refs; /* reference counting; so we don't have to copy keys */ unsigned char *key; /* auxiliary data structure(s) used by the underlying crypto library */ unsigned char *aux; }; struct crypto_cipher_env_t { int type; unsigned char *key; unsigned char *iv; /* auxiliary data structure(s) used by the underlying crypto library */ unsigned char *aux; }; /* static INLINE const EVP_CIPHER * crypto_cipher_evp_cipher(int type, int enc); */ static INLINE int crypto_cipher_iv_length(int type) { /* printf("%d -> %d IV\n",type, EVP_CIPHER_iv_length(crypto_cipher_evp_cipher(type,0))); */ switch(type) { case CRYPTO_CIPHER_IDENTITY: return 0; case CRYPTO_CIPHER_DES: return 8; case CRYPTO_CIPHER_RC4: return 16; case CRYPTO_CIPHER_3DES: return 8; case CRYPTO_CIPHER_AES_CTR: return 0; default: assert(0); return -1; } } static INLINE int crypto_cipher_key_length(int type) { /* printf("%d -> %d\n",type, EVP_CIPHER_key_length(crypto_cipher_evp_cipher(type,0))); */ switch(type) { case CRYPTO_CIPHER_IDENTITY: return 0; case CRYPTO_CIPHER_DES: return 8; case CRYPTO_CIPHER_RC4: return 16; case CRYPTO_CIPHER_3DES: return 16; case CRYPTO_CIPHER_AES_CTR: return 16; default: assert(0); return -1; } } static INLINE const EVP_CIPHER * crypto_cipher_evp_cipher(int type, int enc) { switch(type) { case CRYPTO_CIPHER_IDENTITY: return EVP_enc_null(); case CRYPTO_CIPHER_DES: return EVP_des_ofb(); case CRYPTO_CIPHER_RC4: return EVP_rc4(); case CRYPTO_CIPHER_3DES: return EVP_des_ede_ofb(); default: return NULL; } } static int _crypto_global_initialized = 0; int crypto_global_init() { if (!_crypto_global_initialized) { ERR_load_crypto_strings(); _crypto_global_initialized = 1; } return 0; } int crypto_global_cleanup() { ERR_free_strings(); return 0; } crypto_pk_env_t *_crypto_new_pk_env_rsa(RSA *rsa) { crypto_pk_env_t *env; assert(rsa); env = (crypto_pk_env_t *)tor_malloc(sizeof(crypto_pk_env_t)); env->type = CRYPTO_PK_RSA; env->refs = 1; env->key = (unsigned char*)rsa; env->aux = NULL; return env; } RSA *_crypto_pk_env_get_rsa(crypto_pk_env_t *env) { if (env->type != CRYPTO_PK_RSA) return NULL; return (RSA*)env->key; } EVP_PKEY *_crypto_pk_env_get_evp_pkey(crypto_pk_env_t *env) { RSA *key = NULL; EVP_PKEY *pkey = NULL; if (env->type != CRYPTO_PK_RSA) return NULL; assert(env->key); if (!(key = RSAPrivateKey_dup((RSA*)env->key))) goto error; if (!(pkey = EVP_PKEY_new())) goto error; if (!(EVP_PKEY_assign_RSA(pkey, key))) goto error; return pkey; error: if (pkey) EVP_PKEY_free(pkey); if (key) RSA_free(key); return NULL; } crypto_pk_env_t *crypto_new_pk_env(int type) { RSA *rsa; switch(type) { case CRYPTO_PK_RSA: rsa = RSA_new(); if (!rsa) return NULL; return _crypto_new_pk_env_rsa(rsa); default: return NULL; } } void crypto_free_pk_env(crypto_pk_env_t *env) { assert(env); if(--env->refs > 0) return; switch(env->type) { case CRYPTO_PK_RSA: if (env->key) RSA_free((RSA *)env->key); break; default: break; } free(env); } /* Create a new crypto_cipher_env_t for a given onion cipher type, key, * iv, and encryption flag (1=encrypt, 0=decrypt). Return the crypto object * on success; NULL on failure. */ crypto_cipher_env_t * crypto_create_init_cipher(int cipher_type, char *key, char *iv, int encrypt_mode) { int r; crypto_cipher_env_t *crypto = NULL; if (! (crypto = crypto_new_cipher_env(cipher_type))) { log_fn(LOG_WARN, "Unable to allocate crypto object"); return NULL; } if (crypto_cipher_set_key(crypto, key)) { log_fn(LOG_WARN, "Unable to set key: %s", crypto_perror()); goto error; } if (crypto_cipher_set_iv(crypto, iv)) { log_fn(LOG_WARN, "Unable to set iv: %s", crypto_perror()); goto error; } if (encrypt_mode) r = crypto_cipher_encrypt_init_cipher(crypto); else r = crypto_cipher_decrypt_init_cipher(crypto); if (r) { log_fn(LOG_WARN, "Unable to initialize cipher: %s", crypto_perror()); goto error; } return crypto; error: if (crypto) crypto_free_cipher_env(crypto); return NULL; } crypto_cipher_env_t *crypto_new_cipher_env(int type) { crypto_cipher_env_t *env; int iv_len, key_len; env = (crypto_cipher_env_t *)tor_malloc(sizeof(crypto_cipher_env_t)); env->type = type; env->key = NULL; env->iv = NULL; env->aux = NULL; iv_len = crypto_cipher_iv_length(type); key_len = crypto_cipher_key_length(type); if (type == CRYPTO_CIPHER_AES_CTR) { env->aux = (unsigned char *)aes_new_cipher(); } else if (! crypto_cipher_evp_cipher(type,0)) /* This is not an openssl cipher */ goto err; else { env->aux = (unsigned char *)tor_malloc(sizeof(EVP_CIPHER_CTX)); EVP_CIPHER_CTX_init((EVP_CIPHER_CTX *)env->aux); } if(iv_len) env->iv = (unsigned char *)tor_malloc(iv_len); if(key_len) env->key = (unsigned char *)tor_malloc(key_len); return env; err: if (env->key) free(env->key); if (env->iv) free(env->iv); if (env->aux) free(env->aux); if (env) free(env); return NULL; } void crypto_free_cipher_env(crypto_cipher_env_t *env) { assert(env); if (env->type == CRYPTO_CIPHER_AES_CTR) { assert(env->aux); aes_free_cipher((aes_cnt_cipher_t*)env->aux); env->aux = NULL; } else if (crypto_cipher_evp_cipher(env->type,0)) { /* This is an openssl cipher */ assert(env->aux); EVP_CIPHER_CTX_cleanup((EVP_CIPHER_CTX *)env->aux); } if (env->aux) free((void *)env->aux); if (env->iv) free((void *)env->iv); if (env->key) free((void *)env->key); free((void *)env); } /* public key crypto */ int crypto_pk_generate_key(crypto_pk_env_t *env) { assert(env); switch(env->type) { case CRYPTO_PK_RSA: if (env->key) RSA_free((RSA *)env->key); env->key = (unsigned char *)RSA_generate_key(1024,65537, NULL, NULL); if (!env->key) return -1; break; default: return -1; } return 0; } int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env, FILE *src) { assert(env && src); switch(env->type) { case CRYPTO_PK_RSA: if (env->key) RSA_free((RSA *)env->key); env->key = (unsigned char *)PEM_read_RSAPrivateKey(src, NULL, NULL, NULL); if (!env->key) return -1; break; default : return -1; } return 0; } int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *keyfile) { FILE *f_pr; assert(env && keyfile); if(strspn(keyfile,CONFIG_LEGAL_FILENAME_CHARACTERS) != strlen(keyfile)) { /* filename contains nonlegal characters */ return -1; } /* open the keyfile */ f_pr=fopen(keyfile,"rb"); if (!f_pr) return -1; /* read the private key */ if(crypto_pk_read_private_key_from_file(env, f_pr) < 0) { log_fn(LOG_WARN,"Error reading private key : %s",crypto_perror()); fclose(f_pr); return -1; } fclose(f_pr); /* check the private key */ switch(crypto_pk_check_key(env)) { case 0: log_fn(LOG_WARN,"Private key read but is invalid : %s.", crypto_perror()); return -1; case -1: log_fn(LOG_WARN,"Private key read but validity checking failed : %s",crypto_perror()); return -1; /* case 1: fall through */ } return 0; } int crypto_pk_read_public_key_from_file(crypto_pk_env_t *env, FILE *src) { assert(env && src); switch(env->type) { case CRYPTO_PK_RSA: if(env->key) RSA_free((RSA *)env->key); env->key = (unsigned char *)PEM_read_RSAPublicKey(src, NULL, NULL, NULL); if (!env->key) return -1; break; default : return -1; } return 0; } int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) { BUF_MEM *buf; BIO *b; assert(env && env->key && dest); switch(env->type) { case CRYPTO_PK_RSA: b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ /* Now you can treat b as if it were a file. Just use the * PEM_*_bio_* functions instead of the non-bio variants. */ if(!PEM_write_bio_RSAPublicKey(b, (RSA *)env->key)) return -1; BIO_get_mem_ptr(b, &buf); BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */ BIO_free(b); *dest = tor_malloc(buf->length+1); memcpy(*dest, buf->data, buf->length); (*dest)[buf->length] = 0; /* null terminate it */ *len = buf->length; BUF_MEM_free(buf); break; default: return -1; } return 0; } int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src, int len) { BIO *b; assert(env && src); switch(env->type) { case CRYPTO_PK_RSA: b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ BIO_write(b, src, len); RSA_free((RSA *)env->key); env->key = (unsigned char *)PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL); if(!env->key) return -1; BIO_free(b); break; default: return -1; } return 0; } int crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env, const char *fname) { BIO *bio; char *cp; long len; char *s; int r; assert(env->type == CRYPTO_PK_RSA); if (!(bio = BIO_new(BIO_s_mem()))) return -1; if (PEM_write_bio_RSAPrivateKey(bio, (RSA*)env->key, NULL,NULL,0,NULL,NULL) == 0) { BIO_free(bio); return -1; } len = BIO_get_mem_data(bio, &cp); s = tor_malloc(len+1); strncpy(s, cp, len); s[len] = '\0'; r = write_str_to_file(fname, s); BIO_free(bio); free(s); return r; } int crypto_pk_write_private_key_to_file(crypto_pk_env_t *env, FILE *dest) { assert(env && dest); switch(env->type) { case CRYPTO_PK_RSA: if (!env->key) return -1; if (PEM_write_RSAPrivateKey(dest, (RSA *)env->key, NULL, NULL, 0,0, NULL) == 0) return -1; break; default : return -1; } return 0; } int crypto_pk_write_public_key_to_file(crypto_pk_env_t *env, FILE *dest) { assert(env && dest); switch(env->type) { case CRYPTO_PK_RSA: if (!env->key) return -1; if (PEM_write_RSAPublicKey(dest, (RSA *)env->key) == 0) return -1; break; default : return -1; } return 0; } int crypto_pk_check_key(crypto_pk_env_t *env) { assert(env); switch(env->type) { case CRYPTO_PK_RSA: return RSA_check_key((RSA *)env->key); default: return -1; } } int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) { int result; if (!a || !b) return -1; if (!a->key || !b->key) return -1; if (a->type != b->type) return -1; switch(a->type) { case CRYPTO_PK_RSA: assert(((RSA *)a->key)->n && ((RSA *)a->key)->e && ((RSA *)b->key)->n && ((RSA *)b->key)->e); result = BN_cmp(((RSA *)a->key)->n, ((RSA *)b->key)->n); if (result) return result; return BN_cmp(((RSA *)a->key)->e, ((RSA *)b->key)->e); default: return -1; } } int crypto_pk_keysize(crypto_pk_env_t *env) { assert(env && env->key); return RSA_size((RSA *)env->key); } crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) { assert(env && env->key); switch(env->type) { case CRYPTO_PK_RSA: env->refs++; break; default: return NULL; } return env; } int crypto_pk_public_encrypt(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to, int padding) { assert(env && from && to); switch(env->type) { case CRYPTO_PK_RSA: return RSA_public_encrypt(fromlen, from, to, (RSA *)env->key, padding); default: return -1; } } int crypto_pk_private_decrypt(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to, int padding) { assert(env && from && to); switch(env->type) { case CRYPTO_PK_RSA: if (!(((RSA*)env->key)->p)) return -1; return RSA_private_decrypt(fromlen, from, to, (RSA *)env->key, padding); default: return -1; } } int crypto_pk_public_checksig(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to) { assert(env && from && to); switch(env->type) { case CRYPTO_PK_RSA: return RSA_public_decrypt(fromlen, from, to, (RSA *)env->key, RSA_PKCS1_PADDING); default: return -1; } } int crypto_pk_private_sign(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to) { assert(env && from && to); switch(env->type) { case CRYPTO_PK_RSA: if (!(((RSA*)env->key)->p)) return -1; return RSA_private_encrypt(fromlen, from, to, (RSA *)env->key, RSA_PKCS1_PADDING); default: return -1; } } /* Given a private or public key pk, put a fingerprint of the * public key into fp_out. */ int crypto_pk_get_fingerprint(crypto_pk_env_t *pk, char *fp_out) { unsigned char *buf, *bufp; unsigned char digest[20]; int len; int i; assert(pk->type == CRYPTO_PK_RSA); len = i2d_RSAPublicKey((RSA*)pk->key, NULL); if (len < 0) return -1; if (lenkey, &bufp); if (len < 0) { free(buf); return -1; } if (crypto_SHA_digest(buf, len, digest) < 0) { free(buf); return -1; } bufp = buf; for (i = 0; i < 20; ++i) { sprintf(bufp,"%02X",digest[i]); bufp += 2; if (i%2 && i != 19) { *bufp++ = ' '; } } *bufp = '\0'; assert(strlen(buf) == FINGERPRINT_LEN); assert(crypto_pk_check_fingerprint_syntax(buf)); strcpy(fp_out, buf); free(buf); return 0; } int crypto_pk_check_fingerprint_syntax(const char *s) { int i; for (i = 0; i < FINGERPRINT_LEN; ++i) { if ((i%5) == 4) { if (!isspace(s[i])) return 0; } else { if (!isxdigit(s[i])) return 0; } } if (s[FINGERPRINT_LEN]) return 0; return 1; } /* symmetric crypto */ int crypto_cipher_generate_key(crypto_cipher_env_t *env) { int key_len; assert(env); key_len = crypto_cipher_key_length(env->type); if (key_len > 0) return crypto_rand(key_len, env->key); else if (key_len == 0) return 0; else return -1; } int crypto_cipher_set_iv(crypto_cipher_env_t *env, unsigned char *iv) { int iv_len; assert(env && iv); iv_len = crypto_cipher_iv_length(env->type); if (!iv_len) return 0; if (!env->iv) return -1; memcpy((void*)env->iv, (void*)iv, iv_len); return 0; } int crypto_cipher_set_key(crypto_cipher_env_t *env, unsigned char *key) { int key_len; assert(env && key); key_len = crypto_cipher_key_length(env->type); if (!key_len) return 0; if (!env->key) return -1; memcpy((void*)env->key, (void*)key, key_len); return 0; } unsigned char *crypto_cipher_get_key(crypto_cipher_env_t *env) { return env->key; } int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env) { assert(env); if (crypto_cipher_evp_cipher(env->type, 1)) { RETURN_SSL_OUTCOME(EVP_EncryptInit((EVP_CIPHER_CTX *)env->aux, crypto_cipher_evp_cipher(env->type, 1), env->key, env->iv)); } else if (env->type == CRYPTO_CIPHER_AES_CTR) { aes_set_key((aes_cnt_cipher_t*)env->aux, env->key, 128); return 0; } else { return -1; } } int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env) { assert(env); if (crypto_cipher_evp_cipher(env->type, 0)) { RETURN_SSL_OUTCOME(EVP_EncryptInit((EVP_CIPHER_CTX *)env->aux, crypto_cipher_evp_cipher(env->type, 0), env->key, env->iv)); } else if (env->type == CRYPTO_CIPHER_AES_CTR) { aes_set_key((aes_cnt_cipher_t*)env->aux, env->key, 128); return 0; } else { return -1; } } int crypto_cipher_encrypt(crypto_cipher_env_t *env, unsigned char *from, unsigned int fromlen, unsigned char *to) { int tolen; assert(env && from && to); if (env->type == CRYPTO_CIPHER_AES_CTR) { aes_crypt((aes_cnt_cipher_t*)env->aux, from, fromlen, to); return 0; } else { RETURN_SSL_OUTCOME(EVP_EncryptUpdate((EVP_CIPHER_CTX *)env->aux, to, &tolen, from, fromlen)); } } int crypto_cipher_decrypt(crypto_cipher_env_t *env, unsigned char *from, unsigned int fromlen, unsigned char *to) { int tolen; assert(env && from && to); if (env->type == CRYPTO_CIPHER_AES_CTR) { aes_crypt((aes_cnt_cipher_t*)env->aux, from, fromlen, to); return 0; } else { RETURN_SSL_OUTCOME(EVP_DecryptUpdate((EVP_CIPHER_CTX *)env->aux, to, &tolen, from, fromlen)); } } int crypto_cipher_rewind(crypto_cipher_env_t *env, long delta) { return crypto_cipher_advance(env, -delta); } int crypto_cipher_advance(crypto_cipher_env_t *env, long delta) { if (env->type == CRYPTO_CIPHER_AES_CTR) { aes_adjust_counter((aes_cnt_cipher_t*)env->aux, delta); return 0; } else { return -1; } } /* SHA-1 */ int crypto_SHA_digest(const unsigned char *m, int len, unsigned char *digest) { assert(m && digest); return (SHA1(m,len,digest) == NULL); } struct crypto_digest_env_t { SHA_CTX d; }; crypto_digest_env_t * crypto_new_digest_env(int type) { crypto_digest_env_t *r; assert(type == CRYPTO_SHA1_DIGEST); r = tor_malloc(sizeof(crypto_digest_env_t)); SHA1_Init(&r->d); return r; } void crypto_free_digest_env(crypto_digest_env_t *digest) { if(digest) free(digest); } void crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data, size_t len) { assert(digest); assert(data); SHA1_Update(&digest->d, (void*)data, len); } void crypto_digest_get_digest(crypto_digest_env_t *digest, char *out, size_t out_len) { static char r[SHA_DIGEST_LENGTH]; assert(digest && out); assert(out_len <= SHA_DIGEST_LENGTH); SHA1_Final(r, &digest->d); memcpy(out, r, out_len); } crypto_digest_env_t * crypto_digest_dup(const crypto_digest_env_t *digest) { crypto_digest_env_t *r; assert(digest); r = tor_malloc(sizeof(crypto_digest_env_t)); memcpy(r,digest,sizeof(crypto_digest_env_t)); return r; } void crypto_digest_assign(crypto_digest_env_t *into, const crypto_digest_env_t *from) { assert(into && from); memcpy(into,from,sizeof(crypto_digest_env_t)); } /* DH */ static BIGNUM *dh_param_p = NULL; static BIGNUM *dh_param_g = NULL; static void init_dh_param() { BIGNUM *p, *g; int r; if (dh_param_p && dh_param_g) return; p = BN_new(); g = BN_new(); assert(p && g); #if 0 /* This is from draft-ietf-ipsec-ike-modp-groups-05.txt. It's a safe prime, and supposedly it equals: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 } */ r = BN_hex2bn(&p, "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB9ED529077096966D" "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF"); #endif /* This is from rfc2409, section 6.2. It's a safe prime, and supposedly it equals: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. */ /* See also rfc 3536 */ r = BN_hex2bn(&p, "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE65381FFFFFFFFFFFFFFFF"); assert(r); r = BN_set_word(g, 2); assert(r); dh_param_p = p; dh_param_g = g; } crypto_dh_env_t *crypto_dh_new() { crypto_dh_env_t *res = NULL; if (!dh_param_p) init_dh_param(); res = tor_malloc(sizeof(crypto_dh_env_t)); res->dh = NULL; if (!(res->dh = DH_new())) goto err; if (!(res->dh->p = BN_dup(dh_param_p))) goto err; if (!(res->dh->g = BN_dup(dh_param_g))) goto err; return res; err: if (res && res->dh) DH_free(res->dh); /* frees p and g too */ if (res) free(res); return NULL; } int crypto_dh_get_bytes(crypto_dh_env_t *dh) { assert(dh); return DH_size(dh->dh); } int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len) { int bytes; assert(dh); if (!DH_generate_key(dh->dh)) return -1; assert(dh->dh->pub_key); bytes = BN_num_bytes(dh->dh->pub_key); if (pubkey_len < bytes) return -1; memset(pubkey, 0, pubkey_len); BN_bn2bin(dh->dh->pub_key, pubkey+(pubkey_len-bytes)); return 0; } #undef MIN #define MIN(a,b) ((a)<(b)?(a):(b)) int crypto_dh_compute_secret(crypto_dh_env_t *dh, char *pubkey, int pubkey_len, char *secret_out, int secret_bytes_out) { unsigned char hash[20]; unsigned char *secret_tmp = NULL; BIGNUM *pubkey_bn = NULL; int secret_len; int i; assert(dh); assert(secret_bytes_out/20 <= 255); if (!(pubkey_bn = BN_bin2bn(pubkey, pubkey_len, NULL))) goto error; secret_tmp = tor_malloc(crypto_dh_get_bytes(dh)+1); secret_len = DH_compute_key(secret_tmp, pubkey_bn, dh->dh); /* sometimes secret_len might be less than 128, e.g., 127. that's ok. */ for (i = 0; i < secret_bytes_out; i += 20) { secret_tmp[secret_len] = (unsigned char) i/20; if (crypto_SHA_digest(secret_tmp, secret_len+1, hash)) goto error; memcpy(secret_out+i, hash, MIN(20, secret_bytes_out-i)); } secret_len = secret_bytes_out; goto done; error: secret_len = -1; done: if (pubkey_bn) BN_free(pubkey_bn); tor_free(secret_tmp); return secret_len; } void crypto_dh_free(crypto_dh_env_t *dh) { assert(dh && dh->dh); DH_free(dh->dh); free(dh); } /* random numbers */ #ifdef MS_WINDOWS int crypto_seed_rng() { static int provider_set = 0; static HCRYPTPROV provider; char buf[21]; if (!provider_set) { if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, 0)) { if (GetLastError() != NTE_BAD_KEYSET) { log_fn(LOG_ERR,"Can't get CryptoAPI provider [1]"); return -1; } /* Yes, we need to try it twice. */ if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, CRYPT_NEWKEYSET)) { log_fn(LOG_ERR,"Can't get CryptoAPI provider [2]"); return -1; } } provider_set = 1; } if (!CryptGenRandom(provider, 20, buf)) { log_fn(LOG_ERR,"Can't get entropy from CryptoAPI."); return -1; } RAND_seed(buf, 20); /* And add the current screen state to the entopy pool for * good measure. */ RAND_screen(); return 0; } #else int crypto_seed_rng() { static char *filenames[] = { "/dev/srandom", "/dev/urandom", "/dev/random", NULL }; int i, n; char buf[21]; FILE *f; for (i = 0; filenames[i]; ++i) { f = fopen(filenames[i], "rb"); if (!f) continue; log_fn(LOG_INFO, "Seeding RNG from %s", filenames[i]); n = fread(buf, 1, 20, f); fclose(f); if (n != 20) { log_fn(LOG_WARN, "Error reading from entropy source"); return -1; } RAND_seed(buf, 20); return 0; } log_fn(LOG_WARN, "Cannot seed RNG -- no entropy source found."); return -1; } #endif int crypto_rand(unsigned int n, unsigned char *to) { assert(to); return (RAND_bytes(to, n) != 1); } void crypto_pseudo_rand(unsigned int n, unsigned char *to) { assert(to); if (RAND_pseudo_bytes(to, n) == -1) { log_fn(LOG_ERR, "RAND_pseudo_bytes failed unexpectedly."); exit(1); } } /* return a pseudo random number between 0 and max-1 */ int crypto_pseudo_rand_int(unsigned int max) { unsigned int val; unsigned int cutoff; assert(max < UINT_MAX); assert(max > 0); /* don't div by 0 */ /* We ignore any values that are >= 'cutoff,' to avoid biasing the * distribution with clipping at the upper end of unsigned int's * range. */ cutoff = UINT_MAX - (UINT_MAX%max); while(1) { crypto_pseudo_rand(sizeof(val), (unsigned char*) &val); if (val < cutoff) return val % max; } } /* errors */ char *crypto_perror() { return (char *)ERR_reason_error_string(ERR_get_error()); } int base64_encode(char *dest, int destlen, const char *src, int srclen) { EVP_ENCODE_CTX ctx; int len, ret; /* 48 bytes of input -> 64 bytes of output plus newline. Plus one more byte, in case I'm wrong. */ if (destlen < ((srclen/48)+1)*66) return -1; EVP_EncodeInit(&ctx); EVP_EncodeUpdate(&ctx, dest, &len, (char*) src, srclen); EVP_EncodeFinal(&ctx, dest+len, &ret); ret += len; return ret; } int base64_decode(char *dest, int destlen, const char *src, int srclen) { EVP_ENCODE_CTX ctx; int len, ret; /* 64 bytes of input -> *up to* 48 bytes of output. Plus one more byte, in caes I'm wrong. */ if (destlen < ((srclen/64)+1)*49) return -1; EVP_DecodeInit(&ctx); EVP_DecodeUpdate(&ctx, dest, &len, (char*) src, srclen); EVP_DecodeFinal(&ctx, dest, &ret); ret += len; return ret; }