/* Copyright 2001,2002,2003 Roger Dingledine, Matej Pfajfar. */ /* See LICENSE for licensing information */ /* $Id$ */ /** * \file crypto.c * * \brief Low-level cryptographic functions. **/ #include "orconfig.h" #ifdef MS_WINDOWS #define WIN32_WINNT 0x400 #define _WIN32_WINNT 0x400 #define WIN32_LEAN_AND_MEAN #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_CTYPE_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_FCNTL_H #include #endif #ifdef HAVE_SYS_FCNTL_H #include #endif #include "crypto.h" #include "log.h" #include "aes.h" #include "util.h" #include "container.h" #if OPENSSL_VERSION_NUMBER < 0x00905000l #error "We require openssl >= 0.9.5" #elif OPENSSL_VERSION_NUMBER < 0x00906000l #define OPENSSL_095 #endif /* Certain functions that return a success code in OpenSSL 0.9.6 return void * (and don't indicate errors) in OpenSSL version 0.9.5. * * [OpenSSL 0.9.5 matters, because it ships with Redhat 6.2.] */ #ifdef OPENSSL_095 #define RETURN_SSL_OUTCOME(exp) (exp); return 0 #else #define RETURN_SSL_OUTCOME(exp) return !(exp) #endif /** Macro: is k a valid RSA public or private key? */ #define PUBLIC_KEY_OK(k) ((k) && (k)->key && (k)->key->n) /** Macro: is k a valid RSA private key? */ #define PRIVATE_KEY_OK(k) ((k) && (k)->key && (k)->key->p) struct crypto_pk_env_t { int refs; /* reference counting so we don't have to copy keys */ RSA *key; }; struct crypto_cipher_env_t { unsigned char key[CIPHER_KEY_LEN]; aes_cnt_cipher_t *cipher; }; struct crypto_dh_env_t { DH *dh; }; /* Prototypes for functions only used by tortls.c */ crypto_pk_env_t *_crypto_new_pk_env_rsa(RSA *rsa); RSA *_crypto_pk_env_get_rsa(crypto_pk_env_t *env); EVP_PKEY *_crypto_pk_env_get_evp_pkey(crypto_pk_env_t *env, int private); DH *_crypto_dh_env_get_dh(crypto_dh_env_t *dh); /** Return the number of bytes added by padding method padding. */ static INLINE int crypto_get_rsa_padding_overhead(int padding) { switch(padding) { case RSA_NO_PADDING: return 0; case RSA_PKCS1_OAEP_PADDING: return 42; case RSA_PKCS1_PADDING: return 11; default: tor_assert(0); return -1; } } /** Given a padding method padding, return the correct OpenSSL constant. */ static INLINE int crypto_get_rsa_padding(int padding) { switch(padding) { case PK_NO_PADDING: return RSA_NO_PADDING; case PK_PKCS1_PADDING: return RSA_PKCS1_PADDING; case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING; default: tor_assert(0); return -1; } } /** Boolean: has OpenSSL's crypto been initialized? */ static int _crypto_global_initialized = 0; /** Log all pending crypto errors at level severity. Use * doing to describe our current activities. */ static void crypto_log_errors(int severity, const char *doing) { unsigned int err; const char *msg, *lib, *func; while ((err = ERR_get_error()) != 0) { msg = (const char*)ERR_reason_error_string(err); lib = (const char*)ERR_lib_error_string(err); func = (const char*)ERR_func_error_string(err); if (!msg) msg = "(null)"; if (doing) { log(severity, "crypto error while %s: %s (in %s:%s)", doing, msg, lib, func); } else { log(severity, "crypto error: %s (in %s:%s)", msg, lib, func); } } } /** Initialize the crypto library. Return 0 on success, -1 on failure. */ int crypto_global_init() { if (!_crypto_global_initialized) { ERR_load_crypto_strings(); _crypto_global_initialized = 1; } return 0; } /** Uninitialize the crypto library. Return 0 on success, -1 on failure. */ int crypto_global_cleanup() { ERR_free_strings(); return 0; } /** used by tortls.c: wrap an RSA* in a crypto_pk_env_t. */ crypto_pk_env_t *_crypto_new_pk_env_rsa(RSA *rsa) { crypto_pk_env_t *env; tor_assert(rsa); env = tor_malloc(sizeof(crypto_pk_env_t)); env->refs = 1; env->key = rsa; return env; } /** used by tortls.c: return the RSA* from a crypto_pk_env_t. */ RSA *_crypto_pk_env_get_rsa(crypto_pk_env_t *env) { return env->key; } /** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_env_t. Iff * private is set, include the private-key portion of the key. */ EVP_PKEY *_crypto_pk_env_get_evp_pkey(crypto_pk_env_t *env, int private) { RSA *key = NULL; EVP_PKEY *pkey = NULL; tor_assert(env->key); if (private) { if (!(key = RSAPrivateKey_dup(env->key))) goto error; } else { if (!(key = RSAPublicKey_dup(env->key))) goto error; } if (!(pkey = EVP_PKEY_new())) goto error; if (!(EVP_PKEY_assign_RSA(pkey, key))) goto error; return pkey; error: if (pkey) EVP_PKEY_free(pkey); if (key) RSA_free(key); return NULL; } /** Used by tortls.c: Get the DH* from a crypto_dh_env_t. */ DH *_crypto_dh_env_get_dh(crypto_dh_env_t *dh) { return dh->dh; } /** Allocate and return storage for a public key. The key itself will not yet * be set. */ crypto_pk_env_t *crypto_new_pk_env(void) { RSA *rsa; rsa = RSA_new(); if (!rsa) return NULL; return _crypto_new_pk_env_rsa(rsa); } /** Release a reference to an asymmetric key; when all the references * are released, free the key. */ void crypto_free_pk_env(crypto_pk_env_t *env) { tor_assert(env); if(--env->refs > 0) return; if (env->key) RSA_free(env->key); free(env); } /** Create a new symmetric cipher for a given key and encryption flag * (1=encrypt, 0=decrypt). Return the crypto object on success; NULL * on failure. */ crypto_cipher_env_t * crypto_create_init_cipher(const char *key, int encrypt_mode) { int r; crypto_cipher_env_t *crypto = NULL; if (! (crypto = crypto_new_cipher_env())) { log_fn(LOG_WARN, "Unable to allocate crypto object"); return NULL; } if (crypto_cipher_set_key(crypto, key)) { crypto_log_errors(LOG_WARN, "setting symmetric key"); goto error; } if (encrypt_mode) r = crypto_cipher_encrypt_init_cipher(crypto); else r = crypto_cipher_decrypt_init_cipher(crypto); if (r) goto error; return crypto; error: if (crypto) crypto_free_cipher_env(crypto); return NULL; } /** Allocate and return a new symmetric cipher. */ crypto_cipher_env_t *crypto_new_cipher_env() { crypto_cipher_env_t *env; env = tor_malloc_zero(sizeof(crypto_cipher_env_t)); env->cipher = aes_new_cipher(); return env; } /** Free a symmetric cipher. */ void crypto_free_cipher_env(crypto_cipher_env_t *env) { tor_assert(env); tor_assert(env->cipher); aes_free_cipher(env->cipher); tor_free(env); } /* public key crypto */ /** Generate a new public/private keypair in env. Return 0 on * success, -1 on failure. */ int crypto_pk_generate_key(crypto_pk_env_t *env) { tor_assert(env); if (env->key) RSA_free(env->key); env->key = RSA_generate_key(PK_BYTES*8,65537, NULL, NULL); if (!env->key) { crypto_log_errors(LOG_WARN, "generating RSA key"); return -1; } return 0; } /** Read a PEM-encoded private key from the string s into env. * Return 0 on success, -1 on failure. */ static int crypto_pk_read_private_key_from_string(crypto_pk_env_t *env, const char *s) { BIO *b; tor_assert(env); tor_assert(s); /* Create a read-only memory BIO, backed by the nul-terminated string 's' */ b = BIO_new_mem_buf((char*)s, -1); if (env->key) RSA_free(env->key); env->key = PEM_read_bio_RSAPrivateKey(b,NULL,NULL,NULL); BIO_free(b); if (!env->key) { crypto_log_errors(LOG_WARN, "Error parsing private key"); return -1; } return 0; } /** Read a PEM-encoded private key from the file named by * keyfile into env. Return 0 on success, -1 on failure. */ int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *keyfile) { char *contents; int r; /* Read the file into a string. */ contents = read_file_to_str(keyfile, 0); if (!contents) { log_fn(LOG_WARN, "Error reading private key from %s", keyfile); return -1; } /* Try to parse it. */ r = crypto_pk_read_private_key_from_string(env, contents); tor_free(contents); if (r) return -1; /* read_private_key_from_string already warned, so we don't.*/ /* Make sure it's valid. */ if (crypto_pk_check_key(env) <= 0) return -1; return 0; } /** PEM-encode the public key portion of env and write it to a * newly allocated string. On success, set *dest to the new * string, *len to the string's length, and return 0. On * failure, return -1. */ int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, size_t *len) { BUF_MEM *buf; BIO *b; tor_assert(env); tor_assert(env->key); tor_assert(dest); b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ /* Now you can treat b as if it were a file. Just use the * PEM_*_bio_* functions instead of the non-bio variants. */ if(!PEM_write_bio_RSAPublicKey(b, env->key)) { crypto_log_errors(LOG_WARN, "writing public key to string"); return -1; } BIO_get_mem_ptr(b, &buf); BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */ BIO_free(b); tor_assert(buf->length >= 0); *dest = tor_malloc(buf->length+1); memcpy(*dest, buf->data, buf->length); (*dest)[buf->length] = 0; /* null terminate it */ *len = buf->length; BUF_MEM_free(buf); return 0; } /** Read a PEM-encoded public key from the first len characters of * src, and store the result in env. Return 0 on success, -1 on * failure. */ int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src, size_t len) { BIO *b; tor_assert(env); tor_assert(src); b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ BIO_write(b, src, len); if (env->key) RSA_free(env->key); env->key = PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL); BIO_free(b); if(!env->key) { crypto_log_errors(LOG_WARN, "reading public key from string"); return -1; } return 0; } /* Write the private key from 'env' into the file named by 'fname', * PEM-encoded. Return 0 on success, -1 on failure. */ int crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env, const char *fname) { BIO *bio; char *cp; long len; char *s; int r; tor_assert(PRIVATE_KEY_OK(env)); if (!(bio = BIO_new(BIO_s_mem()))) return -1; if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL) == 0) { crypto_log_errors(LOG_WARN, "writing private key"); BIO_free(bio); return -1; } len = BIO_get_mem_data(bio, &cp); tor_assert(len >= 0); s = tor_malloc(len+1); strlcpy(s, cp, len+1); r = write_str_to_file(fname, s, 0); BIO_free(bio); free(s); return r; } /** Allocate a new string in *out, containing the public portion of the * RSA key in env, encoded first with DER, then in base-64. Return the * length of the encoded representation on success, and -1 on failure. * * This function is for temporary use only. We need a simple * one-line representation for keys to work around a bug in parsing * directories containing "opt keyword\n-----BEGIN OBJECT----" entries * in versions of Tor up to 0.0.9pre2. */ int crypto_pk_DER64_encode_public_key(crypto_pk_env_t *env, char **out) { int len; char buf[PK_BYTES*2]; /* Too long, but hey, stacks are big. */ tor_assert(env); tor_assert(out); len = crypto_pk_asn1_encode(env, buf, sizeof(buf)); if (len < 0) { return -1; } *out = tor_malloc(len * 2); /* too long, but safe. */ if (base64_encode(*out, len*2, buf, len) < 0) { log_fn(LOG_WARN, "Error base64-encoding DER-encoded key"); tor_free(*out); return -1; } /* Remove spaces */ tor_strstrip(*out, " \r\n\t"); return strlen(*out); } /** Decode a base-64 encoded DER representation of an RSA key from in, * and store the result in env. Return 0 on success, -1 on failure. * * This function is for temporary use only. We need a simple * one-line representation for keys to work around a bug in parsing * directories containing "opt keyword\n-----BEGIN OBJECT----" entries * in versions of Tor up to 0.0.9pre2. */ crypto_pk_env_t *crypto_pk_DER64_decode_public_key(const char *in) { char partitioned[PK_BYTES*2 + 16]; char buf[PK_BYTES*2]; int len; tor_assert(in); len = strlen(in); if (strlen(in) > PK_BYTES*2) { return NULL; } /* base64_decode doesn't work unless we insert linebreaks every 64 * characters. how dumb. */ if (tor_strpartition(partitioned, sizeof(partitioned), in, "\n", 64, ALWAYS_TERMINATE)) return NULL; len = base64_decode(buf, sizeof(buf), partitioned, strlen(partitioned)); if (len<0) { log_fn(LOG_WARN,"Error base-64 decoding key"); return NULL; } return crypto_pk_asn1_decode(buf, len); } /** Return true iff env has a valid key. */ int crypto_pk_check_key(crypto_pk_env_t *env) { int r; tor_assert(env); r = RSA_check_key(env->key); if (r <= 0) crypto_log_errors(LOG_WARN,"checking RSA key"); return r; } /** Compare the public-key components of a and b. Return -1 if a\b. */ int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) { int result; if (!a || !b) return -1; if (!a->key || !b->key) return -1; tor_assert(PUBLIC_KEY_OK(a)); tor_assert(PUBLIC_KEY_OK(b)); result = BN_cmp((a->key)->n, (b->key)->n); if (result) return result; return BN_cmp((a->key)->e, (b->key)->e); } /** Return the size of the public key modulus in env, in bytes. */ int crypto_pk_keysize(crypto_pk_env_t *env) { tor_assert(env); tor_assert(env->key); return RSA_size(env->key); } /** Increase the reference count of env, and return it. */ crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) { tor_assert(env); tor_assert(env->key); env->refs++; return env; } /** Encrypt fromlen bytes from from with the public key * in env, using the padding method padding. On success, * write the result to to, and return the number of bytes * written. On failure, return -1. */ int crypto_pk_public_encrypt(crypto_pk_env_t *env, unsigned char *to, const unsigned char *from, int fromlen, int padding) { int r; tor_assert(env); tor_assert(from); tor_assert(to); r = RSA_public_encrypt(fromlen, (unsigned char*)from, to, env->key, crypto_get_rsa_padding(padding)); if (r<0) { crypto_log_errors(LOG_WARN, "performing RSA encryption"); return -1; } return r; } /** Decrypt fromlen bytes from from with the private key * in env, using the padding method padding. On success, * write the result to to, and return the number of bytes * written. On failure, return -1. */ int crypto_pk_private_decrypt(crypto_pk_env_t *env, unsigned char *to, const unsigned char *from, int fromlen, int padding, int warnOnFailure) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(env->key); if (!env->key->p) /* Not a private key */ return -1; r = RSA_private_decrypt(fromlen, (unsigned char*)from, to, env->key, crypto_get_rsa_padding(padding)); if (r<0) { crypto_log_errors(warnOnFailure?LOG_WARN:LOG_INFO, "performing RSA decryption"); return -1; } return r; } /** Check the signature in from (fromlen bytes long) with the * public key in env, using PKCS1 padding. On success, write the * signed data to to, and return the number of bytes written. * On failure, return -1. */ int crypto_pk_public_checksig(crypto_pk_env_t *env, unsigned char *to, const unsigned char *from, int fromlen) { int r; tor_assert(env); tor_assert(from); tor_assert(to); r = RSA_public_decrypt(fromlen, (unsigned char*)from, to, env->key, RSA_PKCS1_PADDING); if (r<0) { crypto_log_errors(LOG_WARN, "checking RSA signature"); return -1; } return r; } /** Check a siglen-byte long signature at sig against * datalen bytes of data at data, using the public key * in env. Return 0 if sig is a correct signature for * SHA1(data). Else return -1. */ int crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const unsigned char *data, int datalen, const unsigned char *sig, int siglen) { char digest[DIGEST_LEN]; char buf[PK_BYTES+1]; int r; tor_assert(env); tor_assert(data); tor_assert(sig); if (crypto_digest(digest,data,datalen)<0) { log_fn(LOG_WARN, "couldn't compute digest"); return -1; } r = crypto_pk_public_checksig(env,buf,sig,siglen); if (r != DIGEST_LEN) { log_fn(LOG_WARN, "Invalid signature"); return -1; } if (memcmp(buf, digest, DIGEST_LEN)) { log_fn(LOG_WARN, "Signature mismatched with digest."); return -1; } return 0; } /** Sign fromlen bytes of data from from with the private key in * env, using PKCS1 padding. On success, write the signature to * to, and return the number of bytes written. On failure, return * -1. */ int crypto_pk_private_sign(crypto_pk_env_t *env, unsigned char *to, const unsigned char *from, int fromlen) { int r; tor_assert(env); tor_assert(from); tor_assert(to); if (!env->key->p) /* Not a private key */ return -1; r = RSA_private_encrypt(fromlen, (unsigned char*)from, to, env->key, RSA_PKCS1_PADDING); if (r<0) { crypto_log_errors(LOG_WARN, "generating RSA signature"); return -1; } return r; } /** Compute a SHA1 digest of fromlen bytes of data stored at * from; sign the data with the private key in env, and * store it in to. Return the number of bytes written on * success, and -1 on failure. */ int crypto_pk_private_sign_digest(crypto_pk_env_t *env, unsigned char *to, const unsigned char *from, int fromlen) { char digest[DIGEST_LEN]; if (crypto_digest(digest,from,fromlen)<0) return -1; return crypto_pk_private_sign(env,to,digest,DIGEST_LEN); } /** Perform a hybrid (public/secret) encryption on fromlen * bytes of data from from, with padding type 'padding', * storing the results on to. * * If no padding is used, the public key must be at least as large as * from. * * Returns the number of bytes written on success, -1 on failure. * * The encrypted data consists of: * - The source data, padded and encrypted with the public key, if the * padded source data is no longer than the public key, and force * is false, OR * - The beginning of the source data prefixed with a 16-byte symmetric key, * padded and encrypted with the public key; followed by the rest of * the source data encrypted in AES-CTR mode with the symmetric key. */ int crypto_pk_public_hybrid_encrypt(crypto_pk_env_t *env, unsigned char *to, const unsigned char *from, int fromlen, int padding, int force) { int overhead, pkeylen, outlen, r, symlen; crypto_cipher_env_t *cipher = NULL; char buf[PK_BYTES+1]; tor_assert(env); tor_assert(from); tor_assert(to); overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding)); pkeylen = crypto_pk_keysize(env); if (padding == PK_NO_PADDING && fromlen < pkeylen) return -1; if (!force && fromlen+overhead <= pkeylen) { /* It all fits in a single encrypt. */ return crypto_pk_public_encrypt(env,to,from,fromlen,padding); } cipher = crypto_new_cipher_env(); if (!cipher) return -1; if (crypto_cipher_generate_key(cipher)<0) goto err; /* You can't just run around RSA-encrypting any bitstream: if it's * greater than the RSA key, then OpenSSL will happily encrypt, and * later decrypt to the wrong value. So we set the first bit of * 'cipher->key' to 0 if we aren't padding. This means that our * symmetric key is really only 127 bits. */ if (padding == PK_NO_PADDING) cipher->key[0] &= 0x7f; if (crypto_cipher_encrypt_init_cipher(cipher)<0) goto err; memcpy(buf, cipher->key, CIPHER_KEY_LEN); memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN); /* Length of symmetrically encrypted data. */ symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN); outlen = crypto_pk_public_encrypt(env,to,buf,pkeylen-overhead,padding); if (outlen!=pkeylen) { goto err; } r = crypto_cipher_encrypt(cipher, to+outlen, from+pkeylen-overhead-CIPHER_KEY_LEN, symlen); if (r<0) goto err; memset(buf, 0, sizeof(buf)); crypto_free_cipher_env(cipher); return outlen + symlen; err: memset(buf, 0, sizeof(buf)); if (cipher) crypto_free_cipher_env(cipher); return -1; } /** Invert crypto_pk_public_hybrid_encrypt. */ int crypto_pk_private_hybrid_decrypt(crypto_pk_env_t *env, unsigned char *to, const unsigned char *from, int fromlen, int padding, int warnOnFailure) { int overhead, pkeylen, outlen, r; crypto_cipher_env_t *cipher = NULL; char buf[PK_BYTES+1]; overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding)); pkeylen = crypto_pk_keysize(env); if (fromlen <= pkeylen) { return crypto_pk_private_decrypt(env,to,from,fromlen,padding,warnOnFailure); } outlen = crypto_pk_private_decrypt(env,buf,from,pkeylen,padding,warnOnFailure); if (outlen<0) { log_fn(warnOnFailure?LOG_WARN:LOG_INFO, "Error decrypting public-key data"); return -1; } if (outlen < CIPHER_KEY_LEN) { log_fn(warnOnFailure?LOG_WARN:LOG_INFO, "No room for a symmetric key"); return -1; } cipher = crypto_create_init_cipher(buf, 0); if (!cipher) { return -1; } memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN); outlen -= CIPHER_KEY_LEN; r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen); if (r<0) goto err; memset(buf,0,sizeof(buf)); crypto_free_cipher_env(cipher); return outlen + (fromlen-pkeylen); err: memset(buf,0,sizeof(buf)); if (cipher) crypto_free_cipher_env(cipher); return -1; } /** ASN.1-encode the public portion of pk into dest. * Return -1 on error, or the number of characters used on success. */ int crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len) { int len; unsigned char *buf, *cp; len = i2d_RSAPublicKey(pk->key, NULL); if (len < 0 || len > dest_len) return -1; cp = buf = tor_malloc(len+1); len = i2d_RSAPublicKey(pk->key, &cp); if (len < 0) { crypto_log_errors(LOG_WARN,"encoding public key"); tor_free(buf); return -1; } /* We don't encode directly into 'dest', because that would be illegal * type-punning. (C99 is smarter than me, C99 is smarter than me...) */ memcpy(dest,buf,len); tor_free(buf); return len; } /** Decode an ASN.1-encoded public key from str; return the result on * success and NULL on failure. */ crypto_pk_env_t *crypto_pk_asn1_decode(const char *str, int len) { RSA *rsa; unsigned char *buf; /* This ifdef suppresses a type warning. Take out the first case once * everybody is using openssl 0.9.7 or later. */ #if OPENSSL_VERSION_NUMBER < 0x00907000l unsigned char *cp; #else const unsigned char *cp; #endif cp = buf = tor_malloc(len); memcpy(buf,str,len); rsa = d2i_RSAPublicKey(NULL, &cp, len); tor_free(buf); if (!rsa) { crypto_log_errors(LOG_WARN,"decoding public key"); return NULL; } return _crypto_new_pk_env_rsa(rsa); } /** Given a private or public key pk, put a SHA1 hash of the * public key into digest_out (must have DIGEST_LEN bytes of space). * Return 0 on success, -1 on failure. */ int crypto_pk_get_digest(crypto_pk_env_t *pk, char *digest_out) { unsigned char *buf, *bufp; int len; len = i2d_RSAPublicKey(pk->key, NULL); if (len < 0) return -1; buf = bufp = tor_malloc(len+1); len = i2d_RSAPublicKey(pk->key, &bufp); if (len < 0) { crypto_log_errors(LOG_WARN,"encoding public key"); free(buf); return -1; } if (crypto_digest(digest_out, buf, len) < 0) { free(buf); return -1; } free(buf); return 0; } /** Given a private or public key pk, put a fingerprint of the * public key into fp_out (must have at least FINGERPRINT_LEN+1 bytes of * space). Return 0 on success, -1 on failure. * * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding * of the public key, converted to hexadecimal, in upper case, with a * space after every four digits. * * If add_space is false, omit the spaces. */ int crypto_pk_get_fingerprint(crypto_pk_env_t *pk, char *fp_out, int add_space) { unsigned char digest[DIGEST_LEN]; unsigned char hexdigest[HEX_DIGEST_LEN+1]; if (crypto_pk_get_digest(pk, digest)) { return -1; } base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN); if (add_space) { if (tor_strpartition(fp_out, FINGERPRINT_LEN+1, hexdigest, " ", 4, NEVER_TERMINATE)<0) return -1; } else { strcpy(fp_out, hexdigest); } return 0; } /** Return true iff s is in the correct format for a fingerprint. */ int crypto_pk_check_fingerprint_syntax(const char *s) { int i; for (i = 0; i < FINGERPRINT_LEN; ++i) { if ((i%5) == 4) { if (!isspace((int)s[i])) return 0; } else { if (!isxdigit((int)s[i])) return 0; } } if (s[FINGERPRINT_LEN]) return 0; return 1; } /* symmetric crypto */ /** Generate a new random key for the symmetric cipher in env. * Return 0 on success, -1 on failure. Does not initialize the cipher. */ int crypto_cipher_generate_key(crypto_cipher_env_t *env) { tor_assert(env); return crypto_rand(env->key, CIPHER_KEY_LEN); } /** Set the symmetric key for the cipher in env to the first * CIPHER_KEY_LEN bytes of key. Does not initialize the cipher. * Return 0 on success, -1 on failure. */ int crypto_cipher_set_key(crypto_cipher_env_t *env, const unsigned char *key) { tor_assert(env); tor_assert(key); if (!env->key) return -1; memcpy(env->key, key, CIPHER_KEY_LEN); return 0; } /** Return a pointer to the key set for the cipher in env. */ const unsigned char *crypto_cipher_get_key(crypto_cipher_env_t *env) { return env->key; } /** Initialize the cipher in env for encryption. Return 0 on * success, -1 on failure. */ int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env) { tor_assert(env); aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8); return 0; } /** Initialize the cipher in env for decryption. Return 0 on * success, -1 on failure. */ int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env) { tor_assert(env); aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8); return 0; } /** Encrypt fromlen bytes from from using the cipher * env; on success, store the result to to and return 0. * On failure, return -1. */ int crypto_cipher_encrypt(crypto_cipher_env_t *env, unsigned char *to, const unsigned char *from, unsigned int fromlen) { tor_assert(env); tor_assert(env->cipher); tor_assert(from); tor_assert(fromlen); tor_assert(to); aes_crypt(env->cipher, from, fromlen, to); return 0; } /** Decrypt fromlen bytes from from using the cipher * env; on success, store the result to to and return 0. * On failure, return -1. */ int crypto_cipher_decrypt(crypto_cipher_env_t *env, unsigned char *to, const unsigned char *from, unsigned int fromlen) { tor_assert(env); tor_assert(from); tor_assert(to); aes_crypt(env->cipher, from, fromlen, to); return 0; } /** Move the position of the cipher stream backwards by delta bytes. * Return 0 on suuccess, -1 on failure. */ int crypto_cipher_rewind(crypto_cipher_env_t *env, long delta) { return crypto_cipher_advance(env, -delta); } /** Move the position of the cipher stream forwards by delta bytes. * Return 0 on suuccess, -1 on failure. */ int crypto_cipher_advance(crypto_cipher_env_t *env, long delta) { aes_adjust_counter(env->cipher, delta); return 0; } /* SHA-1 */ /** Compute the SHA1 digest of len bytes in data stored in * m. Write the DIGEST_LEN byte result into digest. * Return 0 on suuccess, -1 on failure. */ int crypto_digest(unsigned char *digest, const unsigned char *m, int len) { tor_assert(m); tor_assert(digest); return (SHA1(m,len,digest) == NULL); } struct crypto_digest_env_t { SHA_CTX d; }; /** Allocate and return a new digest object. */ crypto_digest_env_t * crypto_new_digest_env(void) { crypto_digest_env_t *r; r = tor_malloc(sizeof(crypto_digest_env_t)); SHA1_Init(&r->d); return r; } /** Deallocate a digest object. */ void crypto_free_digest_env(crypto_digest_env_t *digest) { tor_free(digest); } /** Add len bytes from data to the digest object. */ void crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data, size_t len) { tor_assert(digest); tor_assert(data); /* Using the SHA1_*() calls directly means we don't support doing * sha1 in hardware. But so far the delay of getting the question * to the hardware, and hearing the answer, is likely higher than * just doing it ourselves. Hashes are fast. */ SHA1_Update(&digest->d, (void*)data, len); } /** Compute the hash of the data that has been passed to the digest * object; write the first out_len bytes of the result to out. * out_len must be \<= DIGEST_LEN. */ void crypto_digest_get_digest(crypto_digest_env_t *digest, char *out, size_t out_len) { static char r[DIGEST_LEN]; SHA_CTX tmpctx; tor_assert(digest); tor_assert(out); tor_assert(out_len <= DIGEST_LEN); /* memcpy into a temporary ctx, since SHA1_Final clears the context */ memcpy(&tmpctx, &digest->d, sizeof(SHA_CTX)); SHA1_Final(r, &tmpctx); memcpy(out, r, out_len); } /** Allocate and return a new digest object with the same state as * digest */ crypto_digest_env_t * crypto_digest_dup(const crypto_digest_env_t *digest) { crypto_digest_env_t *r; tor_assert(digest); r = tor_malloc(sizeof(crypto_digest_env_t)); memcpy(r,digest,sizeof(crypto_digest_env_t)); return r; } /** Replace the state of the digest object into with the state * of the digest object from. */ void crypto_digest_assign(crypto_digest_env_t *into, const crypto_digest_env_t *from) { tor_assert(into); tor_assert(from); memcpy(into,from,sizeof(crypto_digest_env_t)); } /* DH */ /** Shared P parameter for our DH key exchanged. */ static BIGNUM *dh_param_p = NULL; /** Shared G parameter for our DH key exchanges. */ static BIGNUM *dh_param_g = NULL; /** Initialize dh_param_p and dh_param_g if they are not already * set. */ static void init_dh_param(void) { BIGNUM *p, *g; int r; if (dh_param_p && dh_param_g) return; p = BN_new(); g = BN_new(); tor_assert(p); tor_assert(g); #if 0 /* This is from draft-ietf-ipsec-ike-modp-groups-05.txt. It's a safe prime, and supposedly it equals: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 } */ r = BN_hex2bn(&p, "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB9ED529077096966D" "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF"); #endif /* This is from rfc2409, section 6.2. It's a safe prime, and supposedly it equals: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. */ /* See also rfc 3536 */ r = BN_hex2bn(&p, "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE65381FFFFFFFFFFFFFFFF"); tor_assert(r); r = BN_set_word(g, 2); tor_assert(r); dh_param_p = p; dh_param_g = g; } /** Allocate and return a new DH object for a key exchange. */ crypto_dh_env_t *crypto_dh_new() { crypto_dh_env_t *res = NULL; if (!dh_param_p) init_dh_param(); res = tor_malloc_zero(sizeof(crypto_dh_env_t)); if (!(res->dh = DH_new())) goto err; if (!(res->dh->p = BN_dup(dh_param_p))) goto err; if (!(res->dh->g = BN_dup(dh_param_g))) goto err; return res; err: crypto_log_errors(LOG_WARN, "creating DH object"); if (res && res->dh) DH_free(res->dh); /* frees p and g too */ if (res) free(res); return NULL; } /** Return the length of the DH key in dh, in bytes. */ int crypto_dh_get_bytes(crypto_dh_env_t *dh) { tor_assert(dh); return DH_size(dh->dh); } /** Generate \ for our part of the key exchange. Return 0 on * success, -1 on failure. */ int crypto_dh_generate_public(crypto_dh_env_t *dh) { if (!DH_generate_key(dh->dh)) { crypto_log_errors(LOG_WARN, "generating DH key"); return -1; } return 0; } /** Generate g^x as necessary, and write the g^x for the key exchange * as a pubkey_len-byte value into pubkey. Return 0 on * success, -1 on failure. pubkey_len must be \>= DH_BYTES. */ int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, size_t pubkey_len) { int bytes; tor_assert(dh); if (!dh->dh->pub_key) { if (crypto_dh_generate_public(dh)<0) return -1; } tor_assert(dh->dh->pub_key); bytes = BN_num_bytes(dh->dh->pub_key); tor_assert(bytes >= 0); if (pubkey_len < (size_t)bytes) return -1; memset(pubkey, 0, pubkey_len); BN_bn2bin(dh->dh->pub_key, pubkey+(pubkey_len-bytes)); return 0; } #undef MIN #define MIN(a,b) ((a)<(b)?(a):(b)) /** Given a DH key exchange object, and our peer's value of g^y (as a * pubkey_len-byte value in pubkey) generate * secret_bytes_out bytes of shared key material and write them * to secret_out. Return the number of bytes generated on success, * or -1 on failure. * * (We generate key material by computing * SHA1( g^xy || "\x00" ) || SHA1( g^xy || "\x01" ) || ... * where || is concatenation.) */ int crypto_dh_compute_secret(crypto_dh_env_t *dh, const char *pubkey, size_t pubkey_len, char *secret_out, size_t secret_bytes_out) { unsigned char hash[DIGEST_LEN]; unsigned char *secret_tmp = NULL; BIGNUM *pubkey_bn = NULL; size_t secret_len=0; unsigned int i; int result=0; tor_assert(dh); tor_assert(secret_bytes_out/DIGEST_LEN <= 255); if (!(pubkey_bn = BN_bin2bn(pubkey, pubkey_len, NULL))) goto error; secret_tmp = tor_malloc(crypto_dh_get_bytes(dh)+1); result = DH_compute_key(secret_tmp, pubkey_bn, dh->dh); if(result < 0) { log_fn(LOG_WARN,"DH_compute_key() failed."); goto error; } secret_len = result; /* sometimes secret_len might be less than 128, e.g., 127. that's ok. */ for (i = 0; i < secret_bytes_out; i += DIGEST_LEN) { secret_tmp[secret_len] = (unsigned char) i/DIGEST_LEN; if (crypto_digest(hash, secret_tmp, secret_len+1)) goto error; memcpy(secret_out+i, hash, MIN(DIGEST_LEN, secret_bytes_out-i)); } secret_len = secret_bytes_out; goto done; error: result = -1; done: crypto_log_errors(LOG_WARN, "completing DH handshake"); if (pubkey_bn) BN_free(pubkey_bn); tor_free(secret_tmp); if(result < 0) return result; else return secret_len; } /** Free a DH key exchange object. */ void crypto_dh_free(crypto_dh_env_t *dh) { tor_assert(dh); tor_assert(dh->dh); DH_free(dh->dh); free(dh); } /* random numbers */ /** Seed OpenSSL's random number generator with DIGEST_LEN bytes from the * operating system. Return 0 on suuccess, -1 on failure. */ int crypto_seed_rng(void) { #ifdef MS_WINDOWS static int provider_set = 0; static HCRYPTPROV provider; char buf[DIGEST_LEN+1]; if (!provider_set) { if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, 0)) { if (GetLastError() != NTE_BAD_KEYSET) { log_fn(LOG_ERR,"Can't get CryptoAPI provider [1]"); return -1; } /* Yes, we need to try it twice. */ if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, CRYPT_NEWKEYSET)) { log_fn(LOG_ERR,"Can't get CryptoAPI provider [2]"); return -1; } } provider_set = 1; } if (!CryptGenRandom(provider, DIGEST_LEN, buf)) { log_fn(LOG_ERR,"Can't get entropy from CryptoAPI."); return -1; } RAND_seed(buf, DIGEST_LEN); /* And add the current screen state to the entopy pool for * good measure. */ RAND_screen(); return 0; #else static const char *filenames[] = { "/dev/srandom", "/dev/urandom", "/dev/random", NULL }; int fd; int i, n; char buf[DIGEST_LEN+1]; for (i = 0; filenames[i]; ++i) { fd = open(filenames[i], O_RDONLY, 0); if (fd<0) continue; log_fn(LOG_INFO, "Seeding RNG from %s", filenames[i]); n = read(fd, buf, DIGEST_LEN); close(fd); if (n != DIGEST_LEN) { log_fn(LOG_WARN, "Error reading from entropy source"); return -1; } RAND_seed(buf, DIGEST_LEN); return 0; } log_fn(LOG_WARN, "Cannot seed RNG -- no entropy source found."); return -1; #endif } /** Write n bytes of strong random data to to. Return 0 on * success, -1 on failure. */ int crypto_rand(unsigned char *to, unsigned int n) { int r; tor_assert(to); r = RAND_bytes(to, n); if (r == 0) crypto_log_errors(LOG_WARN, "generating random data"); return (r == 1) ? 0 : -1; } /** Write n bytes of pseudorandom data to to. Return 0 on * success, -1 on failure. */ void crypto_pseudo_rand(unsigned char *to, unsigned int n) { tor_assert(to); if (RAND_pseudo_bytes(to, n) == -1) { log_fn(LOG_ERR, "RAND_pseudo_bytes failed unexpectedly."); crypto_log_errors(LOG_WARN, "generating random data"); exit(1); } } /** Return a pseudorandom integer, choosen uniformly from the values * between 0 and max-1. */ int crypto_pseudo_rand_int(unsigned int max) { unsigned int val; unsigned int cutoff; tor_assert(max < UINT_MAX); tor_assert(max > 0); /* don't div by 0 */ /* We ignore any values that are >= 'cutoff,' to avoid biasing the * distribution with clipping at the upper end of unsigned int's * range. */ cutoff = UINT_MAX - (UINT_MAX%max); while(1) { crypto_pseudo_rand((unsigned char*) &val, sizeof(val)); if (val < cutoff) return val % max; } } /** Return a randomly chosen element of sl; or NULL if sl is empty. */ void *smartlist_choose(const smartlist_t *sl) { size_t len; len = smartlist_len(sl); if(len) return smartlist_get(sl,crypto_pseudo_rand_int(len)); return NULL; /* no elements to choose from */ } /** Base-64 encode srclen bytes of data from src. Write * the result into dest, if it will fit within destlen * bytes. Return the number of bytes written on success; -1 if * destlen is too short, or other failure. */ int base64_encode(char *dest, size_t destlen, const char *src, size_t srclen) { EVP_ENCODE_CTX ctx; int len, ret; /* 48 bytes of input -> 64 bytes of output plus newline. Plus one more byte, in case I'm wrong. */ if (destlen < ((srclen/48)+1)*66) return -1; EVP_EncodeInit(&ctx); EVP_EncodeUpdate(&ctx, dest, &len, (char*) src, srclen); EVP_EncodeFinal(&ctx, dest+len, &ret); ret += len; return ret; } /** Base-64 decode srclen bytes of data from src. Write * the result into dest, if it will fit within destlen * bytes. Return the number of bytes written on success; -1 if * destlen is too short, or other failure. */ int base64_decode(char *dest, size_t destlen, const char *src, size_t srclen) { EVP_ENCODE_CTX ctx; int len, ret; /* 64 bytes of input -> *up to* 48 bytes of output. Plus one more byte, in case I'm wrong. */ if (destlen < ((srclen/64)+1)*49) return -1; EVP_DecodeInit(&ctx); EVP_DecodeUpdate(&ctx, dest, &len, (char*) src, srclen); EVP_DecodeFinal(&ctx, dest, &ret); ret += len; return ret; } /** Implements base32 encoding as in rfc3548. Limitation: Requires * that srclen*8 is a multiple of 5. */ void base32_encode(char *dest, size_t destlen, const char *src, size_t srclen) { unsigned int nbits, i, bit, v, u; nbits = srclen * 8; tor_assert((nbits%5) == 0); /* We need an even multiple of 5 bits. */ tor_assert((nbits/5)+1 <= destlen); /* We need enough space. */ for (i=0,bit=0; bit < nbits; ++i, bit+=5) { /* set v to the 16-bit value starting at src[bits/8], 0-padded. */ v = ((uint8_t)src[bit/8]) << 8; if (bit+5> (11-(bit%8))) & 0x1F; dest[i] = BASE32_CHARS[u]; } dest[i] = '\0'; } /** Implement RFC2440-style iterated-salted S2K conversion: convert the * secret_len-byte secret into a key_out_len byte * key_out. As in RFC2440, the first 8 bytes of s2k_specifier * are a salt; the 9th byte describes how much iteration to do. * Does not support key_out_len > DIGEST_LEN. */ void secret_to_key(char *key_out, size_t key_out_len, const char *secret, size_t secret_len, const char *s2k_specifier) { crypto_digest_env_t *d; uint8_t c; size_t count; char *tmp; #define EXPBIAS 6 c = s2k_specifier[8]; count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS); #undef EXPBIAS tor_assert(key_out_len <= DIGEST_LEN); d = crypto_new_digest_env(); tmp = tor_malloc(8+secret_len); memcpy(tmp,s2k_specifier,8); memcpy(tmp+8,secret,secret_len); secret_len += 8; while (count) { if (count >= secret_len) { crypto_digest_add_bytes(d, tmp, secret_len); count -= secret_len; } else { crypto_digest_add_bytes(d, tmp, count); count = 0; } } crypto_digest_get_digest(d, key_out, key_out_len); tor_free(tmp); crypto_free_digest_env(d); } /* Local Variables: mode:c indent-tabs-mode:nil c-basic-offset:2 End: */