/* Copyright 2003-2004 Roger Dingledine * Copyright 2004-2007 Roger Dingledine, Nick Mathewson */ /* See LICENSE for licensing information */ /* $Id$ */ #ifndef __CONTAINER_H #define __CONTAINER_H #define CONTAINER_H_ID \ "$Id$" #include "util.h" /** A resizeable list of pointers, with associated helpful functionality. * * The members of this struct are exposed only so that macros and inlines can * use them; all access to smartlist internals should go throuch the functions * and macros defined here. **/ typedef struct smartlist_t { /** list has enough capacity to store exactly capacity elements * before it needs to be resized. Only the first num_used (\<= * capacity) elements point to valid data. */ void **list; int num_used; int capacity; } smartlist_t; smartlist_t *smartlist_create(void); void smartlist_free(smartlist_t *sl); void smartlist_set_capacity(smartlist_t *sl, int n); void smartlist_clear(smartlist_t *sl); void smartlist_add(smartlist_t *sl, void *element); void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2); void smartlist_remove(smartlist_t *sl, const void *element); void *smartlist_pop_last(smartlist_t *sl); void smartlist_reverse(smartlist_t *sl); void smartlist_string_remove(smartlist_t *sl, const char *element); int smartlist_isin(const smartlist_t *sl, const void *element) ATTR_PURE; int smartlist_string_isin(const smartlist_t *sl, const char *element) ATTR_PURE; int smartlist_string_pos(const smartlist_t *, const char *elt) ATTR_PURE; int smartlist_string_isin_case(const smartlist_t *sl, const char *element) ATTR_PURE; int smartlist_string_num_isin(const smartlist_t *sl, int num) ATTR_PURE; int smartlist_digest_isin(const smartlist_t *sl, const char *element) ATTR_PURE; int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2) ATTR_PURE; void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2); void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2); /* smartlist_choose() is defined in crypto.[ch] */ #ifdef DEBUG_SMARTLIST /** Return the number of items in sl. */ static INLINE int smartlist_len(const smartlist_t *sl) ATTR_PURE; static INLINE int smartlist_len(const smartlist_t *sl) { tor_assert(sl); return (sl)->num_used; } /** Return the idxth element of sl. */ static INLINE void *smartlist_get(const smartlist_t *sl, int idx) ATTR_PURE; static INLINE void *smartlist_get(const smartlist_t *sl, int idx) { tor_assert(sl); tor_assert(idx>=0); tor_assert(sl->num_used > idx); return sl->list[idx]; } static INLINE void smartlist_set(smartlist_t *sl, int idx, void *val) { tor_assert(sl); tor_assert(idx>=0); tor_assert(sl->num_used > idx); sl->list[idx] = val; } #else #define smartlist_len(sl) ((sl)->num_used) #define smartlist_get(sl, idx) ((sl)->list[idx]) #define smartlist_set(sl, idx, val) ((sl)->list[idx] = (val)) #endif /** Exchange the elements at indices idx1 and idx2 of the * smartlist sl. */ static INLINE void smartlist_swap(smartlist_t *sl, int idx1, int idx2) { if (idx1 != idx2) { void *elt = smartlist_get(sl, idx1); smartlist_set(sl, idx1, smartlist_get(sl, idx2)); smartlist_set(sl, idx2, elt); } } void smartlist_del(smartlist_t *sl, int idx); void smartlist_del_keeporder(smartlist_t *sl, int idx); void smartlist_insert(smartlist_t *sl, int idx, void *val); void smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b)); void smartlist_uniq(smartlist_t *sl, int (*compare)(const void **a, const void **b), void (*free_fn)(void *elt)); void smartlist_sort_strings(smartlist_t *sl); void smartlist_sort_digests(smartlist_t *sl); void smartlist_uniq_strings(smartlist_t *sl); void smartlist_uniq_digests(smartlist_t *sl); void *smartlist_bsearch(smartlist_t *sl, const void *key, int (*compare)(const void *key, const void **member)) ATTR_PURE; void smartlist_pqueue_add(smartlist_t *sl, int (*compare)(const void *a, const void *b), void *item); void *smartlist_pqueue_pop(smartlist_t *sl, int (*compare)(const void *a, const void *b)); void smartlist_pqueue_assert_ok(smartlist_t *sl, int (*compare)(const void *a, const void *b)); #define SPLIT_SKIP_SPACE 0x01 #define SPLIT_IGNORE_BLANK 0x02 int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep, int flags, int max); char *smartlist_join_strings(smartlist_t *sl, const char *join, int terminate, size_t *len_out) ATTR_MALLOC; char *smartlist_join_strings2(smartlist_t *sl, const char *join, size_t join_len, int terminate, size_t *len_out) ATTR_MALLOC; /** Iterate over the items in a smartlist sl, in order. For each item, * assign it to a new local variable of type type named var, and * execute the statement cmd. Inside the loop, the loop index can * be accessed as var_sl_idx and the length of the list can be accessed * as var_sl_len. * * NOTE: Do not change the length of the list while the loop is in progress, * unless you adjust the _sl_len variable correspondingly. See second example * below. * * Example use: *
 *   smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
 *   SMARTLIST_FOREACH(list, char *, cp,
 *   {
 *     printf("%d: %s\n", cp_sl_idx, cp);
 *     tor_free(cp);
 *   });
 *   smartlist_free(list);
 * 
* * Example use (advanced): *
 *   SMARTLIST_FOREACH(list, char *, cp,
 *   {
 *     if (!strcmp(cp, "junk")) {
 *       smartlist_del(list, cp_sl_idx);
 *       tor_free(cp);
 *       --cp_sl_len; // decrement length of list so we don't run off the end
 *       --cp_sl_idx; // decrement idx so we consider the item that moved here
 *     }
 *   });
 * 
*/ #define SMARTLIST_FOREACH(sl, type, var, cmd) \ STMT_BEGIN \ int var ## _sl_idx, var ## _sl_len=(sl)->num_used; \ type var; \ for (var ## _sl_idx = 0; var ## _sl_idx < var ## _sl_len; \ ++var ## _sl_idx) { \ var = (sl)->list[var ## _sl_idx]; \ cmd; \ } STMT_END /** Helper: While in a SMARTLIST_FOREACH loop over the list sl indexed * with the variable var, remove the current element in a way that * won't confuse the loop. */ #define SMARTLIST_DEL_CURRENT(sl, var) \ STMT_BEGIN \ smartlist_del(sl, var ## _sl_idx); \ --var ## _sl_idx; \ --var ## _sl_len; \ STMT_END #define DECLARE_MAP_FNS(maptype, keytype, prefix) \ typedef struct maptype maptype; \ typedef struct prefix##entry_t *prefix##iter_t; \ maptype* prefix##new(void); \ void* prefix##set(maptype *map, keytype key, void *val); \ void* prefix##get(const maptype *map, keytype key); \ void* prefix##remove(maptype *map, keytype key); \ void prefix##free(maptype *map, void (*free_val)(void*)); \ int prefix##isempty(const maptype *map); \ int prefix##size(const maptype *map); \ prefix##iter_t *prefix##iter_init(maptype *map); \ prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter); \ prefix##iter_t *prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter); \ void prefix##iter_get(prefix##iter_t *iter, keytype *keyp, void **valp); \ int prefix##iter_done(prefix##iter_t *iter); \ void prefix##assert_ok(const maptype *map) /* Map from const char * to void *. Implemented with a hash table. */ DECLARE_MAP_FNS(strmap_t, const char *, strmap_); DECLARE_MAP_FNS(digestmap_t, const char *, digestmap_); #undef DECLARE_MAP_FNS void* strmap_set_lc(strmap_t *map, const char *key, void *val); void* strmap_get_lc(const strmap_t *map, const char *key); void* strmap_remove_lc(strmap_t *map, const char *key); #define DECLARE_TYPED_DIGESTMAP_FNS(prefix, maptype, valtype) \ typedef struct maptype maptype; \ typedef struct prefix##iter_t prefix##iter_t; \ static INLINE maptype* prefix##new(void) \ { \ return (maptype*)digestmap_new(); \ } \ static INLINE valtype* prefix##get(maptype *map, const char *key) \ { \ return (valtype*)digestmap_get((digestmap_t*)map, key); \ } \ static INLINE valtype* prefix##set(maptype *map, const char *key, \ valtype *val) \ { \ return (valtype*)digestmap_set((digestmap_t*)map, key, val); \ } \ static INLINE valtype* prefix##remove(maptype *map, const char *key) \ { \ return (valtype*)digestmap_remove((digestmap_t*)map, key); \ } \ static INLINE void prefix##free(maptype *map, void (*free_val)(void*)) \ { \ digestmap_free((digestmap_t*)map, free_val); \ } \ static INLINE int prefix##isempty(maptype *map) \ { \ return digestmap_isempty((digestmap_t*)map); \ } \ static INLINE int prefix##size(maptype *map) \ { \ return digestmap_size((digestmap_t*)map); \ } \ static INLINE prefix##iter_t *prefix##iter_init(maptype *map) \ { \ return (prefix##iter_t*) digestmap_iter_init((digestmap_t*)map); \ } \ static INLINE prefix##iter_t *prefix##iter_next(maptype *map, \ prefix##iter_t *iter) \ { \ return (prefix##iter_t*) digestmap_iter_next( \ (digestmap_t*)map, (digestmap_iter_t*)iter); \ } \ static INLINE prefix##iter_t *prefix##iter_next_rmv(maptype *map, \ prefix##iter_t *iter) \ { \ return (prefix##iter_t*) digestmap_iter_next_rmv( \ (digestmap_t*)map, (digestmap_iter_t*)iter); \ } \ static INLINE void prefix##iter_get(prefix##iter_t *iter, \ const char **keyp, \ valtype **valp) \ { \ void *v; \ digestmap_iter_get((digestmap_iter_t*) iter, keyp, &v); \ *valp = v; \ } \ static INLINE int prefix##iter_done(prefix##iter_t *iter) \ { \ return digestmap_iter_done((digestmap_iter_t*)iter); \ } #if SIZEOF_INT == 4 #define BITARRAY_SHIFT 5 #elif SIZEOF_INT == 8 #define BITARRAY_SHIFT 6 #else #error "int is neither 4 nor 8 bytes. I can't deal with that." #endif #define BITARRAY_MASK ((1u<n_bits bits. */ static INLINE bitarray_t * bitarray_init_zero(int n_bits) { size_t sz = (n_bits+BITARRAY_MASK) / (1u << BITARRAY_SHIFT); return tor_malloc_zero(sz*sizeof(unsigned int)); } /** Free the bit array ba. */ static INLINE void bitarray_free(bitarray_t *ba) { tor_free(ba); } /** Set the bitth bit in b to 1. */ static INLINE void bitarray_set(bitarray_t *b, int bit) { b[bit >> BITARRAY_SHIFT] |= (1u << (bit & BITARRAY_MASK)); } /** Set the bitth bit in b to 0. */ static INLINE void bitarray_clear(bitarray_t *b, int bit) { b[bit >> BITARRAY_SHIFT] &= ~ (1u << (bit & BITARRAY_MASK)); } /** Return true iff bitth bit in b is nonzero. NOTE: does * not necessarily return 1 on true. */ static INLINE unsigned int bitarray_is_set(bitarray_t *b, int bit) { return b[bit >> BITARRAY_SHIFT] & (1u << (bit & BITARRAY_MASK)); } /* These functions, given an array of n_elements, return the * nth lowest element. nth=0 gives the lowest element; * n_elements-1 gives the highest; and (n_elements-1) / 2 gives * the median. As a side effect, the elements of array are sorted. */ int find_nth_int(int *array, int n_elements, int nth); time_t find_nth_time(time_t *array, int n_elements, int nth); double find_nth_double(double *array, int n_elements, int nth); uint32_t find_nth_uint32(uint32_t *array, int n_elements, int nth); static INLINE int median_int(int *array, int n_elements) { return find_nth_int(array, n_elements, (n_elements-1)/2); } static INLINE time_t median_time(time_t *array, int n_elements) { return find_nth_time(array, n_elements, (n_elements-1)/2); } static INLINE double median_double(double *array, int n_elements) { return find_nth_double(array, n_elements, (n_elements-1)/2); } static INLINE uint32_t median_uint32(uint32_t *array, int n_elements) { return find_nth_uint32(array, n_elements, (n_elements-1)/2); } #endif