/* Copyright (c) 2003-2004, Roger Dingledine
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2010, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file container.c
 * \brief Implements a smartlist (a resizable array) along
 * with helper functions to use smartlists.  Also includes
 * hash table implementations of a string-to-void* map, and of
 * a digest-to-void* map.
 **/

#include "compat.h"
#include "util.h"
#include "torlog.h"
#include "container.h"
#include "crypto.h"

#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "ht.h"

/** All newly allocated smartlists have this capacity. */
#define SMARTLIST_DEFAULT_CAPACITY 16

/** Allocate and return an empty smartlist.
 */
smartlist_t *
smartlist_create(void)
{
  smartlist_t *sl = tor_malloc(sizeof(smartlist_t));
  sl->num_used = 0;
  sl->capacity = SMARTLIST_DEFAULT_CAPACITY;
  sl->list = tor_malloc(sizeof(void *) * sl->capacity);
  return sl;
}

/** Deallocate a smartlist.  Does not release storage associated with the
 * list's elements.
 */
void
smartlist_free(smartlist_t *sl)
{
  if (!sl)
    return;
  tor_free(sl->list);
  tor_free(sl);
}

/** Remove all elements from the list.
 */
void
smartlist_clear(smartlist_t *sl)
{
  sl->num_used = 0;
}

/** Make sure that <b>sl</b> can hold at least <b>size</b> entries. */
static INLINE void
smartlist_ensure_capacity(smartlist_t *sl, int size)
{
  if (size > sl->capacity) {
    int higher = sl->capacity * 2;
    while (size > higher)
      higher *= 2;
    tor_assert(higher > 0); /* detect overflow */
    sl->capacity = higher;
    sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity);
  }
}

/** Append element to the end of the list. */
void
smartlist_add(smartlist_t *sl, void *element)
{
  smartlist_ensure_capacity(sl, sl->num_used+1);
  sl->list[sl->num_used++] = element;
}

/** Append each element from S2 to the end of S1. */
void
smartlist_add_all(smartlist_t *s1, const smartlist_t *s2)
{
  int new_size = s1->num_used + s2->num_used;
  tor_assert(new_size >= s1->num_used); /* check for overflow. */
  smartlist_ensure_capacity(s1, new_size);
  memcpy(s1->list + s1->num_used, s2->list, s2->num_used*sizeof(void*));
  s1->num_used = new_size;
}

/** Remove all elements E from sl such that E==element.  Preserve
 * the order of any elements before E, but elements after E can be
 * rearranged.
 */
void
smartlist_remove(smartlist_t *sl, const void *element)
{
  int i;
  if (element == NULL)
    return;
  for (i=0; i < sl->num_used; i++)
    if (sl->list[i] == element) {
      sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
      i--; /* so we process the new i'th element */
    }
}

/** If <b>sl</b> is nonempty, remove and return the final element.  Otherwise,
 * return NULL. */
void *
smartlist_pop_last(smartlist_t *sl)
{
  tor_assert(sl);
  if (sl->num_used)
    return sl->list[--sl->num_used];
  else
    return NULL;
}

/** Reverse the order of the items in <b>sl</b>. */
void
smartlist_reverse(smartlist_t *sl)
{
  int i, j;
  void *tmp;
  tor_assert(sl);
  for (i = 0, j = sl->num_used-1; i < j; ++i, --j) {
    tmp = sl->list[i];
    sl->list[i] = sl->list[j];
    sl->list[j] = tmp;
  }
}

/** If there are any strings in sl equal to element, remove and free them.
 * Does not preserve order. */
void
smartlist_string_remove(smartlist_t *sl, const char *element)
{
  int i;
  tor_assert(sl);
  tor_assert(element);
  for (i = 0; i < sl->num_used; ++i) {
    if (!strcmp(element, sl->list[i])) {
      tor_free(sl->list[i]);
      sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
      i--; /* so we process the new i'th element */
    }
  }
}

/** Return true iff some element E of sl has E==element.
 */
int
smartlist_isin(const smartlist_t *sl, const void *element)
{
  int i;
  for (i=0; i < sl->num_used; i++)
    if (sl->list[i] == element)
      return 1;
  return 0;
}

/** Return true iff <b>sl</b> has some element E such that
 * !strcmp(E,<b>element</b>)
 */
int
smartlist_string_isin(const smartlist_t *sl, const char *element)
{
  int i;
  if (!sl) return 0;
  for (i=0; i < sl->num_used; i++)
    if (strcmp((const char*)sl->list[i],element)==0)
      return 1;
  return 0;
}

/** If <b>element</b> is equal to an element of <b>sl</b>, return that
 * element's index.  Otherwise, return -1. */
int
smartlist_string_pos(const smartlist_t *sl, const char *element)
{
  int i;
  if (!sl) return -1;
  for (i=0; i < sl->num_used; i++)
    if (strcmp((const char*)sl->list[i],element)==0)
      return i;
  return -1;
}

/** Return true iff <b>sl</b> has some element E such that
 * !strcasecmp(E,<b>element</b>)
 */
int
smartlist_string_isin_case(const smartlist_t *sl, const char *element)
{
  int i;
  if (!sl) return 0;
  for (i=0; i < sl->num_used; i++)
    if (strcasecmp((const char*)sl->list[i],element)==0)
      return 1;
  return 0;
}

/** Return true iff <b>sl</b> has some element E such that E is equal
 * to the decimal encoding of <b>num</b>.
 */
int
smartlist_string_num_isin(const smartlist_t *sl, int num)
{
  char buf[16];
  tor_snprintf(buf,sizeof(buf),"%d", num);
  return smartlist_string_isin(sl, buf);
}

/** Return true iff <b>sl</b> has some element E such that
 * !memcmp(E,<b>element</b>,DIGEST_LEN)
 */
int
smartlist_digest_isin(const smartlist_t *sl, const char *element)
{
  int i;
  if (!sl) return 0;
  for (i=0; i < sl->num_used; i++)
    if (memcmp((const char*)sl->list[i],element,DIGEST_LEN)==0)
      return 1;
  return 0;
}

/** Return true iff some element E of sl2 has smartlist_isin(sl1,E).
 */
int
smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2)
{
  int i;
  for (i=0; i < sl2->num_used; i++)
    if (smartlist_isin(sl1, sl2->list[i]))
      return 1;
  return 0;
}

/** Remove every element E of sl1 such that !smartlist_isin(sl2,E).
 * Does not preserve the order of sl1.
 */
void
smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2)
{
  int i;
  for (i=0; i < sl1->num_used; i++)
    if (!smartlist_isin(sl2, sl1->list[i])) {
      sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */
      i--; /* so we process the new i'th element */
    }
}

/** Remove every element E of sl1 such that smartlist_isin(sl2,E).
 * Does not preserve the order of sl1.
 */
void
smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2)
{
  int i;
  for (i=0; i < sl2->num_used; i++)
    smartlist_remove(sl1, sl2->list[i]);
}

/** Remove the <b>idx</b>th element of sl; if idx is not the last
 * element, swap the last element of sl into the <b>idx</b>th space.
 * Return the old value of the <b>idx</b>th element.
 */
void
smartlist_del(smartlist_t *sl, int idx)
{
  tor_assert(sl);
  tor_assert(idx>=0);
  tor_assert(idx < sl->num_used);
  sl->list[idx] = sl->list[--sl->num_used];
}

/** Remove the <b>idx</b>th element of sl; if idx is not the last element,
 * moving all subsequent elements back one space. Return the old value
 * of the <b>idx</b>th element.
 */
void
smartlist_del_keeporder(smartlist_t *sl, int idx)
{
  tor_assert(sl);
  tor_assert(idx>=0);
  tor_assert(idx < sl->num_used);
  --sl->num_used;
  if (idx < sl->num_used)
    memmove(sl->list+idx, sl->list+idx+1, sizeof(void*)*(sl->num_used-idx));
}

/** Insert the value <b>val</b> as the new <b>idx</b>th element of
 * <b>sl</b>, moving all items previously at <b>idx</b> or later
 * forward one space.
 */
void
smartlist_insert(smartlist_t *sl, int idx, void *val)
{
  tor_assert(sl);
  tor_assert(idx>=0);
  tor_assert(idx <= sl->num_used);
  if (idx == sl->num_used) {
    smartlist_add(sl, val);
  } else {
    smartlist_ensure_capacity(sl, sl->num_used+1);
    /* Move other elements away */
    if (idx < sl->num_used)
      memmove(sl->list + idx + 1, sl->list + idx,
              sizeof(void*)*(sl->num_used-idx));
    sl->num_used++;
    sl->list[idx] = val;
  }
}

/**
 * Split a string <b>str</b> along all occurrences of <b>sep</b>,
 * adding the split strings, in order, to <b>sl</b>.
 *
 * If <b>flags</b>&amp;SPLIT_SKIP_SPACE is true, remove initial and
 * trailing space from each entry.
 * If <b>flags</b>&amp;SPLIT_IGNORE_BLANK is true, remove any entries
 * of length 0.
 * If <b>flags</b>&amp;SPLIT_STRIP_SPACE is true, strip spaces from each
 * split string.
 *
 * If max>0, divide the string into no more than <b>max</b> pieces. If
 * <b>sep</b> is NULL, split on any sequence of horizontal space.
 */
int
smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
                       int flags, int max)
{
  const char *cp, *end, *next;
  int n = 0;

  tor_assert(sl);
  tor_assert(str);

  cp = str;
  while (1) {
    if (flags&SPLIT_SKIP_SPACE) {
      while (TOR_ISSPACE(*cp)) ++cp;
    }

    if (max>0 && n == max-1) {
      end = strchr(cp,'\0');
    } else if (sep) {
      end = strstr(cp,sep);
      if (!end)
        end = strchr(cp,'\0');
    } else {
      for (end = cp; *end && *end != '\t' && *end != ' '; ++end)
        ;
    }

    tor_assert(end);

    if (!*end) {
      next = NULL;
    } else if (sep) {
      next = end+strlen(sep);
    } else {
      next = end+1;
      while (*next == '\t' || *next == ' ')
        ++next;
    }

    if (flags&SPLIT_SKIP_SPACE) {
      while (end > cp && TOR_ISSPACE(*(end-1)))
        --end;
    }
    if (end != cp || !(flags&SPLIT_IGNORE_BLANK)) {
      char *string = tor_strndup(cp, end-cp);
      if (flags&SPLIT_STRIP_SPACE)
        tor_strstrip(string, " ");
      smartlist_add(sl, string);
      ++n;
    }
    if (!next)
      break;
    cp = next;
  }

  return n;
}

/** Allocate and return a new string containing the concatenation of
 * the elements of <b>sl</b>, in order, separated by <b>join</b>.  If
 * <b>terminate</b> is true, also terminate the string with <b>join</b>.
 * If <b>len_out</b> is not NULL, set <b>len_out</b> to the length of
 * the returned string. Requires that every element of <b>sl</b> is
 * NUL-terminated string.
 */
char *
smartlist_join_strings(smartlist_t *sl, const char *join,
                       int terminate, size_t *len_out)
{
  return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out);
}

/** As smartlist_join_strings, but instead of separating/terminated with a
 * NUL-terminated string <b>join</b>, uses the <b>join_len</b>-byte sequence
 * at <b>join</b>.  (Useful for generating a sequence of NUL-terminated
 * strings.)
 */
char *
smartlist_join_strings2(smartlist_t *sl, const char *join,
                        size_t join_len, int terminate, size_t *len_out)
{
  int i;
  size_t n = 0;
  char *r = NULL, *dst, *src;

  tor_assert(sl);
  tor_assert(join);

  if (terminate)
    n = join_len;

  for (i = 0; i < sl->num_used; ++i) {
    n += strlen(sl->list[i]);
    if (i+1 < sl->num_used) /* avoid double-counting the last one */
      n += join_len;
  }
  dst = r = tor_malloc(n+1);
  for (i = 0; i < sl->num_used; ) {
    for (src = sl->list[i]; *src; )
      *dst++ = *src++;
    if (++i < sl->num_used) {
      memcpy(dst, join, join_len);
      dst += join_len;
    }
  }
  if (terminate) {
    memcpy(dst, join, join_len);
    dst += join_len;
  }
  *dst = '\0';

  if (len_out)
    *len_out = dst-r;
  return r;
}

/** Sort the members of <b>sl</b> into an order defined by
 * the ordering function <b>compare</b>, which returns less then 0 if a
 * precedes b, greater than 0 if b precedes a, and 0 if a 'equals' b.
 */
void
smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b))
{
  if (!sl->num_used)
    return;
  qsort(sl->list, sl->num_used, sizeof(void*),
        (int (*)(const void *,const void*))compare);
}

/** Given a smartlist <b>sl</b> sorted with the function <b>compare</b>,
 * return the most frequent member in the list.  Break ties in favor of
 * later elements.  If the list is empty, return NULL.
 */
void *
smartlist_get_most_frequent(const smartlist_t *sl,
                            int (*compare)(const void **a, const void **b))
{
  const void *most_frequent = NULL;
  int most_frequent_count = 0;

  const void *cur = NULL;
  int i, count=0;

  if (!sl->num_used)
    return NULL;
  for (i = 0; i < sl->num_used; ++i) {
    const void *item = sl->list[i];
    if (cur && 0 == compare(&cur, &item)) {
      ++count;
    } else {
      if (cur && count >= most_frequent_count) {
        most_frequent = cur;
        most_frequent_count = count;
      }
      cur = item;
      count = 1;
    }
  }
  if (cur && count >= most_frequent_count) {
    most_frequent = cur;
    most_frequent_count = count;
  }
  return (void*)most_frequent;
}

/** Given a sorted smartlist <b>sl</b> and the comparison function used to
 * sort it, remove all duplicate members.  If free_fn is provided, calls
 * free_fn on each duplicate.  Otherwise, just removes them.  Preserves order.
 */
void
smartlist_uniq(smartlist_t *sl,
               int (*compare)(const void **a, const void **b),
               void (*free_fn)(void *a))
{
  int i;
  for (i=1; i < sl->num_used; ++i) {
    if (compare((const void **)&(sl->list[i-1]),
                (const void **)&(sl->list[i])) == 0) {
      if (free_fn)
        free_fn(sl->list[i]);
      smartlist_del_keeporder(sl, i--);
    }
  }
}

/** Assuming the members of <b>sl</b> are in order, return a pointer to the
 * member that matches <b>key</b>.  Ordering and matching are defined by a
 * <b>compare</b> function that returns 0 on a match; less than 0 if key is
 * less than member, and greater than 0 if key is greater then member.
 */
void *
smartlist_bsearch(smartlist_t *sl, const void *key,
                  int (*compare)(const void *key, const void **member))
{
  int found, idx;
  idx = smartlist_bsearch_idx(sl, key, compare, &found);
  return found ? smartlist_get(sl, idx) : NULL;
}

/** Assuming the members of <b>sl</b> are in order, return the index of the
 * member that matches <b>key</b>.  If no member matches, return the index of
 * the first member greater than <b>key</b>, or smartlist_len(sl) if no member
 * is greater than <b>key</b>.  Set <b>found_out</b> to true on a match, to
 * false otherwise.  Ordering and matching are defined by a <b>compare</b>
 * function that returns 0 on a match; less than 0 if key is less than member,
 * and greater than 0 if key is greater then member.
 */
int
smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
                      int (*compare)(const void *key, const void **member),
                      int *found_out)
{
  int hi = smartlist_len(sl) - 1, lo = 0, cmp, mid;

  while (lo <= hi) {
    mid = (lo + hi) / 2;
    cmp = compare(key, (const void**) &(sl->list[mid]));
    if (cmp>0) { /* key > sl[mid] */
      lo = mid+1;
    } else if (cmp<0) { /* key < sl[mid] */
      hi = mid-1;
    } else { /* key == sl[mid] */
      *found_out = 1;
      return mid;
    }
  }
  /* lo > hi. */
  {
    tor_assert(lo >= 0);
    if (lo < smartlist_len(sl)) {
      cmp = compare(key, (const void**) &(sl->list[lo]));
      tor_assert(cmp < 0);
    } else if (smartlist_len(sl)) {
      cmp = compare(key, (const void**) &(sl->list[smartlist_len(sl)-1]));
      tor_assert(cmp > 0);
    }
  }
  *found_out = 0;
  return lo;
}

/** Helper: compare two const char **s. */
static int
_compare_string_ptrs(const void **_a, const void **_b)
{
  return strcmp((const char*)*_a, (const char*)*_b);
}

/** Sort a smartlist <b>sl</b> containing strings into lexically ascending
 * order. */
void
smartlist_sort_strings(smartlist_t *sl)
{
  smartlist_sort(sl, _compare_string_ptrs);
}

/** Return the most frequent string in the sorted list <b>sl</b> */
char *
smartlist_get_most_frequent_string(smartlist_t *sl)
{
  return smartlist_get_most_frequent(sl, _compare_string_ptrs);
}

/** Remove duplicate strings from a sorted list, and free them with tor_free().
 */
void
smartlist_uniq_strings(smartlist_t *sl)
{
  smartlist_uniq(sl, _compare_string_ptrs, _tor_free);
}

/* Heap-based priority queue implementation for O(lg N) insert and remove.
 * Recall that the heap property is that, for every index I, h[I] <
 * H[LEFT_CHILD[I]] and h[I] < H[RIGHT_CHILD[I]].
 *
 * For us to remove items other than the topmost item, each item must store
 * its own index within the heap.  When calling the pqueue functions, tell
 * them about the offset of the field that stores the index within the item.
 *
 * Example:
 *
 *   typedef struct timer_t {
 *     struct timeval tv;
 *     int heap_index;
 *   } timer_t;
 *
 *   static int compare(const void *p1, const void *p2) {
 *     const timer_t *t1 = p1, *t2 = p2;
 *     if (t1->tv.tv_sec < t2->tv.tv_sec) {
 *        return -1;
 *     } else if (t1->tv.tv_sec > t2->tv.tv_sec) {
 *        return 1;
 *     } else {
 *        return t1->tv.tv_usec - t2->tv_usec;
 *     }
 *   }
 *
 *   void timer_heap_insert(smartlist_t *heap, timer_t *timer) {
 *      smartlist_pqueue_add(heap, compare, STRUCT_OFFSET(timer_t, heap_index),
 *         timer);
 *   }
 *
 *   void timer_heap_pop(smartlist_t *heap) {
 *      return smartlist_pqueue_pop(heap, compare,
 *         STRUCT_OFFSET(timer_t, heap_index));
 *   }
 */

/* For a 1-indexed array, we would use LEFT_CHILD[x] = 2*x and RIGHT_CHILD[x]
 * = 2*x + 1.  But this is C, so we have to adjust a little. */
//#define LEFT_CHILD(i)  ( ((i)+1)*2 - 1)
//#define RIGHT_CHILD(i) ( ((i)+1)*2 )
//#define PARENT(i)      ( ((i)+1)/2 - 1)
#define LEFT_CHILD(i)  ( 2*(i) + 1 )
#define RIGHT_CHILD(i) ( 2*(i) + 2 )
#define PARENT(i)      ( ((i)-1) / 2 )

#define IDXP(p) ((int*)STRUCT_VAR_P(p, idx_field_offset))

#define UPDATE_IDX(i)  do {                            \
    void *updated = sl->list[i];                       \
    *IDXP(updated) = i;                                \
  } while (0)

#define IDX_OF_ITEM(p) (*IDXP(p))

/** Helper. <b>sl</b> may have at most one violation of the heap property:
 * the item at <b>idx</b> may be greater than one or both of its children.
 * Restore the heap property. */
static INLINE void
smartlist_heapify(smartlist_t *sl,
                  int (*compare)(const void *a, const void *b),
                  int idx_field_offset,
                  int idx)
{
  while (1) {
    int left_idx = LEFT_CHILD(idx);
    int best_idx;

    if (left_idx >= sl->num_used)
      return;
    if (compare(sl->list[idx],sl->list[left_idx]) < 0)
      best_idx = idx;
    else
      best_idx = left_idx;
    if (left_idx+1 < sl->num_used &&
        compare(sl->list[left_idx+1],sl->list[best_idx]) < 0)
      best_idx = left_idx + 1;

    if (best_idx == idx) {
      return;
    } else {
      void *tmp = sl->list[idx];
      sl->list[idx] = sl->list[best_idx];
      sl->list[best_idx] = tmp;
      UPDATE_IDX(idx);
      UPDATE_IDX(best_idx);

      idx = best_idx;
    }
  }
}

/** Insert <b>item</b> into the heap stored in <b>sl</b>, where order is
 * determined by <b>compare</b> and the offset of the item in the heap is
 * stored in an int-typed field at position <b>idx_field_offset</b> within
 * item.
 */
void
smartlist_pqueue_add(smartlist_t *sl,
                     int (*compare)(const void *a, const void *b),
                     int idx_field_offset,
                     void *item)
{
  int idx;
  smartlist_add(sl,item);
  UPDATE_IDX(sl->num_used-1);

  for (idx = sl->num_used - 1; idx; ) {
    int parent = PARENT(idx);
    if (compare(sl->list[idx], sl->list[parent]) < 0) {
      void *tmp = sl->list[parent];
      sl->list[parent] = sl->list[idx];
      sl->list[idx] = tmp;
      UPDATE_IDX(parent);
      UPDATE_IDX(idx);
      idx = parent;
    } else {
      return;
    }
  }
}

/** Remove and return the top-priority item from the heap stored in <b>sl</b>,
 * where order is determined by <b>compare</b> and the item's position is
 * stored at position <b>idx_field_offset</b> within the item.  <b>sl</b> must
 * not be empty. */
void *
smartlist_pqueue_pop(smartlist_t *sl,
                     int (*compare)(const void *a, const void *b),
                     int idx_field_offset)
{
  void *top;
  tor_assert(sl->num_used);

  top = sl->list[0];
  *IDXP(top)=-1;
  if (--sl->num_used) {
    sl->list[0] = sl->list[sl->num_used];
    UPDATE_IDX(0);
    smartlist_heapify(sl, compare, idx_field_offset, 0);
  }
  return top;
}

/** Remove the item <b>item</b> from the heap stored in <b>sl</b>,
 * where order is determined by <b>compare</b> and the item's position is
 * stored at position <b>idx_field_offset</b> within the item.  <b>sl</b> must
 * not be empty. */
void
smartlist_pqueue_remove(smartlist_t *sl,
                        int (*compare)(const void *a, const void *b),
                        int idx_field_offset,
                        void *item)
{
  int idx = IDX_OF_ITEM(item);
  tor_assert(idx >= 0);
  tor_assert(sl->list[idx] == item);
  --sl->num_used;
  *IDXP(item) = -1;
  if (idx == sl->num_used) {
    return;
  } else {
    sl->list[idx] = sl->list[sl->num_used];
    UPDATE_IDX(idx);
    smartlist_heapify(sl, compare, idx_field_offset, idx);
  }
}

/** Assert that the heap property is correctly maintained by the heap stored
 * in <b>sl</b>, where order is determined by <b>compare</b>. */
void
smartlist_pqueue_assert_ok(smartlist_t *sl,
                           int (*compare)(const void *a, const void *b),
                           int idx_field_offset)
{
  int i;
  for (i = sl->num_used - 1; i >= 0; --i) {
    if (i>0)
      tor_assert(compare(sl->list[PARENT(i)], sl->list[i]) <= 0);
    tor_assert(IDX_OF_ITEM(sl->list[i]) == i);
  }
}

/** Helper: compare two DIGEST_LEN digests. */
static int
_compare_digests(const void **_a, const void **_b)
{
  return memcmp((const char*)*_a, (const char*)*_b, DIGEST_LEN);
}

/** Sort the list of DIGEST_LEN-byte digests into ascending order. */
void
smartlist_sort_digests(smartlist_t *sl)
{
  smartlist_sort(sl, _compare_digests);
}

/** Remove duplicate digests from a sorted list, and free them with tor_free().
 */
void
smartlist_uniq_digests(smartlist_t *sl)
{
  smartlist_uniq(sl, _compare_digests, _tor_free);
}

/** Helper: compare two DIGEST256_LEN digests. */
static int
_compare_digests256(const void **_a, const void **_b)
{
  return memcmp((const char*)*_a, (const char*)*_b, DIGEST256_LEN);
}

/** Sort the list of DIGEST256_LEN-byte digests into ascending order. */
void
smartlist_sort_digests256(smartlist_t *sl)
{
  smartlist_sort(sl, _compare_digests256);
}

/** Return the most frequent member of the sorted list of DIGEST256_LEN
 * digests in <b>sl</b> */
char *
smartlist_get_most_frequent_digest256(smartlist_t *sl)
{
  return smartlist_get_most_frequent(sl, _compare_digests256);
}

/** Remove duplicate 256-bit digests from a sorted list, and free them with
 * tor_free().
 */
void
smartlist_uniq_digests256(smartlist_t *sl)
{
  smartlist_uniq(sl, _compare_digests256, _tor_free);
}

/** Helper: Declare an entry type and a map type to implement a mapping using
 * ht.h.  The map type will be called <b>maptype</b>.  The key part of each
 * entry is declared using the C declaration <b>keydecl</b>.  All functions
 * and types associated with the map get prefixed with <b>prefix</b> */
#define DEFINE_MAP_STRUCTS(maptype, keydecl, prefix)      \
  typedef struct prefix ## entry_t {                      \
    HT_ENTRY(prefix ## entry_t) node;                     \
    void *val;                                            \
    keydecl;                                              \
  } prefix ## entry_t;                                    \
  struct maptype {                                        \
    HT_HEAD(prefix ## impl, prefix ## entry_t) head;      \
  }

DEFINE_MAP_STRUCTS(strmap_t, char *key, strmap_);
DEFINE_MAP_STRUCTS(digestmap_t, char key[DIGEST_LEN], digestmap_);

/** Helper: compare strmap_entry_t objects by key value. */
static INLINE int
strmap_entries_eq(const strmap_entry_t *a, const strmap_entry_t *b)
{
  return !strcmp(a->key, b->key);
}

/** Helper: return a hash value for a strmap_entry_t. */
static INLINE unsigned int
strmap_entry_hash(const strmap_entry_t *a)
{
  return ht_string_hash(a->key);
}

/** Helper: compare digestmap_entry_t objects by key value. */
static INLINE int
digestmap_entries_eq(const digestmap_entry_t *a, const digestmap_entry_t *b)
{
  return !memcmp(a->key, b->key, DIGEST_LEN);
}

/** Helper: return a hash value for a digest_map_t. */
static INLINE unsigned int
digestmap_entry_hash(const digestmap_entry_t *a)
{
#if SIZEOF_INT != 8
  const uint32_t *p = (const uint32_t*)a->key;
  return p[0] ^ p[1] ^ p[2] ^ p[3] ^ p[4];
#else
  const uint64_t *p = (const uint64_t*)a->key;
  return p[0] ^ p[1];
#endif
}

HT_PROTOTYPE(strmap_impl, strmap_entry_t, node, strmap_entry_hash,
             strmap_entries_eq)
HT_GENERATE(strmap_impl, strmap_entry_t, node, strmap_entry_hash,
            strmap_entries_eq, 0.6, malloc, realloc, free)

HT_PROTOTYPE(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash,
             digestmap_entries_eq)
HT_GENERATE(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash,
            digestmap_entries_eq, 0.6, malloc, realloc, free)

/** Constructor to create a new empty map from strings to void*'s.
 */
strmap_t *
strmap_new(void)
{
  strmap_t *result;
  result = tor_malloc(sizeof(strmap_t));
  HT_INIT(strmap_impl, &result->head);
  return result;
}

/** Constructor to create a new empty map from digests to void*'s.
 */
digestmap_t *
digestmap_new(void)
{
  digestmap_t *result;
  result = tor_malloc(sizeof(digestmap_t));
  HT_INIT(digestmap_impl, &result->head);
  return result;
}

/** Set the current value for <b>key</b> to <b>val</b>.  Returns the previous
 * value for <b>key</b> if one was set, or NULL if one was not.
 *
 * This function makes a copy of <b>key</b> if necessary, but not of
 * <b>val</b>.
 */
void *
strmap_set(strmap_t *map, const char *key, void *val)
{
  strmap_entry_t *resolve;
  strmap_entry_t search;
  void *oldval;
  tor_assert(map);
  tor_assert(key);
  tor_assert(val);
  search.key = (char*)key;
  resolve = HT_FIND(strmap_impl, &map->head, &search);
  if (resolve) {
    oldval = resolve->val;
    resolve->val = val;
    return oldval;
  } else {
    resolve = tor_malloc_zero(sizeof(strmap_entry_t));
    resolve->key = tor_strdup(key);
    resolve->val = val;
    tor_assert(!HT_FIND(strmap_impl, &map->head, resolve));
    HT_INSERT(strmap_impl, &map->head, resolve);
    return NULL;
  }
}

#define OPTIMIZED_DIGESTMAP_SET

/** Like strmap_set() above but for digestmaps. */
void *
digestmap_set(digestmap_t *map, const char *key, void *val)
{
#ifndef OPTIMIZED_DIGESTMAP_SET
  digestmap_entry_t *resolve;
#endif
  digestmap_entry_t search;
  void *oldval;
  tor_assert(map);
  tor_assert(key);
  tor_assert(val);
  memcpy(&search.key, key, DIGEST_LEN);
#ifndef OPTIMIZED_DIGESTMAP_SET
  resolve = HT_FIND(digestmap_impl, &map->head, &search);
  if (resolve) {
    oldval = resolve->val;
    resolve->val = val;
    return oldval;
  } else {
    resolve = tor_malloc_zero(sizeof(digestmap_entry_t));
    memcpy(resolve->key, key, DIGEST_LEN);
    resolve->val = val;
    HT_INSERT(digestmap_impl, &map->head, resolve);
    return NULL;
  }
#else
  /* We spend up to 5% of our time in this function, so the code below is
   * meant to optimize the check/alloc/set cycle by avoiding the two trips to
   * the hash table that we do in the unoptimized code above.  (Each of
   * HT_INSERT and HT_FIND calls HT_SET_HASH and HT_FIND_P.)
   */
  _HT_FIND_OR_INSERT(digestmap_impl, node, digestmap_entry_hash, &(map->head),
         digestmap_entry_t, &search, ptr,
         {
            /* we found an entry. */
            oldval = (*ptr)->val;
            (*ptr)->val = val;
            return oldval;
         },
         {
           /* We didn't find the entry. */
           digestmap_entry_t *newent =
             tor_malloc_zero(sizeof(digestmap_entry_t));
           memcpy(newent->key, key, DIGEST_LEN);
           newent->val = val;
           _HT_FOI_INSERT(node, &(map->head), &search, newent, ptr);
           return NULL;
         });
#endif
}

/** Return the current value associated with <b>key</b>, or NULL if no
 * value is set.
 */
void *
strmap_get(const strmap_t *map, const char *key)
{
  strmap_entry_t *resolve;
  strmap_entry_t search;
  tor_assert(map);
  tor_assert(key);
  search.key = (char*)key;
  resolve = HT_FIND(strmap_impl, &map->head, &search);
  if (resolve) {
    return resolve->val;
  } else {
    return NULL;
  }
}

/** Like strmap_get() above but for digestmaps. */
void *
digestmap_get(const digestmap_t *map, const char *key)
{
  digestmap_entry_t *resolve;
  digestmap_entry_t search;
  tor_assert(map);
  tor_assert(key);
  memcpy(&search.key, key, DIGEST_LEN);
  resolve = HT_FIND(digestmap_impl, &map->head, &search);
  if (resolve) {
    return resolve->val;
  } else {
    return NULL;
  }
}

/** Remove the value currently associated with <b>key</b> from the map.
 * Return the value if one was set, or NULL if there was no entry for
 * <b>key</b>.
 *
 * Note: you must free any storage associated with the returned value.
 */
void *
strmap_remove(strmap_t *map, const char *key)
{
  strmap_entry_t *resolve;
  strmap_entry_t search;
  void *oldval;
  tor_assert(map);
  tor_assert(key);
  search.key = (char*)key;
  resolve = HT_REMOVE(strmap_impl, &map->head, &search);
  if (resolve) {
    oldval = resolve->val;
    tor_free(resolve->key);
    tor_free(resolve);
    return oldval;
  } else {
    return NULL;
  }
}

/** Like strmap_remove() above but for digestmaps. */
void *
digestmap_remove(digestmap_t *map, const char *key)
{
  digestmap_entry_t *resolve;
  digestmap_entry_t search;
  void *oldval;
  tor_assert(map);
  tor_assert(key);
  memcpy(&search.key, key, DIGEST_LEN);
  resolve = HT_REMOVE(digestmap_impl, &map->head, &search);
  if (resolve) {
    oldval = resolve->val;
    tor_free(resolve);
    return oldval;
  } else {
    return NULL;
  }
}

/** Same as strmap_set, but first converts <b>key</b> to lowercase. */
void *
strmap_set_lc(strmap_t *map, const char *key, void *val)
{
  /* We could be a little faster by using strcasecmp instead, and a separate
   * type, but I don't think it matters. */
  void *v;
  char *lc_key = tor_strdup(key);
  tor_strlower(lc_key);
  v = strmap_set(map,lc_key,val);
  tor_free(lc_key);
  return v;
}

/** Same as strmap_get, but first converts <b>key</b> to lowercase. */
void *
strmap_get_lc(const strmap_t *map, const char *key)
{
  void *v;
  char *lc_key = tor_strdup(key);
  tor_strlower(lc_key);
  v = strmap_get(map,lc_key);
  tor_free(lc_key);
  return v;
}

/** Same as strmap_remove, but first converts <b>key</b> to lowercase */
void *
strmap_remove_lc(strmap_t *map, const char *key)
{
  void *v;
  char *lc_key = tor_strdup(key);
  tor_strlower(lc_key);
  v = strmap_remove(map,lc_key);
  tor_free(lc_key);
  return v;
}

/** return an <b>iterator</b> pointer to the front of a map.
 *
 * Iterator example:
 *
 * \code
 * // uppercase values in "map", removing empty values.
 *
 * strmap_iter_t *iter;
 * const char *key;
 * void *val;
 * char *cp;
 *
 * for (iter = strmap_iter_init(map); !strmap_iter_done(iter); ) {
 *    strmap_iter_get(iter, &key, &val);
 *    cp = (char*)val;
 *    if (!*cp) {
 *       iter = strmap_iter_next_rmv(map,iter);
 *       free(val);
 *    } else {
 *       for (;*cp;cp++) *cp = TOR_TOUPPER(*cp);
 *       iter = strmap_iter_next(map,iter);
 *    }
 * }
 * \endcode
 *
 */
strmap_iter_t *
strmap_iter_init(strmap_t *map)
{
  tor_assert(map);
  return HT_START(strmap_impl, &map->head);
}

/** Start iterating through <b>map</b>.  See strmap_iter_init() for example. */
digestmap_iter_t *
digestmap_iter_init(digestmap_t *map)
{
  tor_assert(map);
  return HT_START(digestmap_impl, &map->head);
}

/** Advance the iterator <b>iter</b> for <b>map</b> a single step to the next
 * entry, and return its new value. */
strmap_iter_t *
strmap_iter_next(strmap_t *map, strmap_iter_t *iter)
{
  tor_assert(map);
  tor_assert(iter);
  return HT_NEXT(strmap_impl, &map->head, iter);
}

/** Advance the iterator <b>iter</b> for map a single step to the next entry,
 * and return its new value. */
digestmap_iter_t *
digestmap_iter_next(digestmap_t *map, digestmap_iter_t *iter)
{
  tor_assert(map);
  tor_assert(iter);
  return HT_NEXT(digestmap_impl, &map->head, iter);
}

/** Advance the iterator <b>iter</b> a single step to the next entry, removing
 * the current entry, and return its new value.
 */
strmap_iter_t *
strmap_iter_next_rmv(strmap_t *map, strmap_iter_t *iter)
{
  strmap_entry_t *rmv;
  tor_assert(map);
  tor_assert(iter);
  tor_assert(*iter);
  rmv = *iter;
  iter = HT_NEXT_RMV(strmap_impl, &map->head, iter);
  tor_free(rmv->key);
  tor_free(rmv);
  return iter;
}

/** Advance the iterator <b>iter</b> a single step to the next entry, removing
 * the current entry, and return its new value.
 */
digestmap_iter_t *
digestmap_iter_next_rmv(digestmap_t *map, digestmap_iter_t *iter)
{
  digestmap_entry_t *rmv;
  tor_assert(map);
  tor_assert(iter);
  tor_assert(*iter);
  rmv = *iter;
  iter = HT_NEXT_RMV(digestmap_impl, &map->head, iter);
  tor_free(rmv);
  return iter;
}

/** Set *<b>keyp</b> and *<b>valp</b> to the current entry pointed to by
 * iter. */
void
strmap_iter_get(strmap_iter_t *iter, const char **keyp, void **valp)
{
  tor_assert(iter);
  tor_assert(*iter);
  tor_assert(keyp);
  tor_assert(valp);
  *keyp = (*iter)->key;
  *valp = (*iter)->val;
}

/** Set *<b>keyp</b> and *<b>valp</b> to the current entry pointed to by
 * iter. */
void
digestmap_iter_get(digestmap_iter_t *iter, const char **keyp, void **valp)
{
  tor_assert(iter);
  tor_assert(*iter);
  tor_assert(keyp);
  tor_assert(valp);
  *keyp = (*iter)->key;
  *valp = (*iter)->val;
}

/** Return true iff <b>iter</b> has advanced past the last entry of
 * <b>map</b>. */
int
strmap_iter_done(strmap_iter_t *iter)
{
  return iter == NULL;
}

/** Return true iff <b>iter</b> has advanced past the last entry of
 * <b>map</b>. */
int
digestmap_iter_done(digestmap_iter_t *iter)
{
  return iter == NULL;
}

/** Remove all entries from <b>map</b>, and deallocate storage for those
 * entries.  If free_val is provided, it is invoked on every value in
 * <b>map</b>.
 */
void
strmap_free(strmap_t *map, void (*free_val)(void*))
{
  strmap_entry_t **ent, **next, *this;
  if (!map)
    return;

  for (ent = HT_START(strmap_impl, &map->head); ent != NULL; ent = next) {
    this = *ent;
    next = HT_NEXT_RMV(strmap_impl, &map->head, ent);
    tor_free(this->key);
    if (free_val)
      free_val(this->val);
    tor_free(this);
  }
  tor_assert(HT_EMPTY(&map->head));
  HT_CLEAR(strmap_impl, &map->head);
  tor_free(map);
}

/** Remove all entries from <b>map</b>, and deallocate storage for those
 * entries.  If free_val is provided, it is invoked on every value in
 * <b>map</b>.
 */
void
digestmap_free(digestmap_t *map, void (*free_val)(void*))
{
  digestmap_entry_t **ent, **next, *this;
  if (!map)
    return;
  for (ent = HT_START(digestmap_impl, &map->head); ent != NULL; ent = next) {
    this = *ent;
    next = HT_NEXT_RMV(digestmap_impl, &map->head, ent);
    if (free_val)
      free_val(this->val);
    tor_free(this);
  }
  tor_assert(HT_EMPTY(&map->head));
  HT_CLEAR(digestmap_impl, &map->head);
  tor_free(map);
}

/** Fail with an assertion error if anything has gone wrong with the internal
 * representation of <b>map</b>. */
void
strmap_assert_ok(const strmap_t *map)
{
  tor_assert(!_strmap_impl_HT_REP_IS_BAD(&map->head));
}
/** Fail with an assertion error if anything has gone wrong with the internal
 * representation of <b>map</b>. */
void
digestmap_assert_ok(const digestmap_t *map)
{
  tor_assert(!_digestmap_impl_HT_REP_IS_BAD(&map->head));
}

/** Return true iff <b>map</b> has no entries. */
int
strmap_isempty(const strmap_t *map)
{
  return HT_EMPTY(&map->head);
}

/** Return true iff <b>map</b> has no entries. */
int
digestmap_isempty(const digestmap_t *map)
{
  return HT_EMPTY(&map->head);
}

/** Return the number of items in <b>map</b>. */
int
strmap_size(const strmap_t *map)
{
  return HT_SIZE(&map->head);
}

/** Return the number of items in <b>map</b>. */
int
digestmap_size(const digestmap_t *map)
{
  return HT_SIZE(&map->head);
}

/** Declare a function called <b>funcname</b> that acts as a find_nth_FOO
 * function for an array of type <b>elt_t</b>*.
 *
 * NOTE: The implementation kind of sucks: It's O(n log n), whereas finding
 * the kth element of an n-element list can be done in O(n).  Then again, this
 * implementation is not in critical path, and it is obviously correct. */
#define IMPLEMENT_ORDER_FUNC(funcname, elt_t)                   \
  static int                                                    \
  _cmp_ ## elt_t(const void *_a, const void *_b)                \
  {                                                             \
    const elt_t *a = _a, *b = _b;                               \
    if (*a<*b)                                                  \
      return -1;                                                \
    else if (*a>*b)                                             \
      return 1;                                                 \
    else                                                        \
      return 0;                                                 \
  }                                                             \
  elt_t                                                         \
  funcname(elt_t *array, int n_elements, int nth)               \
  {                                                             \
    tor_assert(nth >= 0);                                       \
    tor_assert(nth < n_elements);                               \
    qsort(array, n_elements, sizeof(elt_t), _cmp_ ##elt_t);     \
    return array[nth];                                          \
  }

IMPLEMENT_ORDER_FUNC(find_nth_int, int)
IMPLEMENT_ORDER_FUNC(find_nth_time, time_t)
IMPLEMENT_ORDER_FUNC(find_nth_double, double)
IMPLEMENT_ORDER_FUNC(find_nth_uint32, uint32_t)
IMPLEMENT_ORDER_FUNC(find_nth_int32, int32_t)
IMPLEMENT_ORDER_FUNC(find_nth_long, long)

/** Return a newly allocated digestset_t, optimized to hold a total of
 * <b>max_elements</b> digests with a reasonably low false positive weight. */
digestset_t *
digestset_new(int max_elements)
{
  /* The probability of false positives is about P=(1 - exp(-kn/m))^k, where k
   * is the number of hash functions per entry, m is the bits in the array,
   * and n is the number of elements inserted.  For us, k==4, n<=max_elements,
   * and m==n_bits= approximately max_elements*32.  This gives
   *   P<(1-exp(-4*n/(32*n)))^4 == (1-exp(1/-8))^4 == .00019
   *
   * It would be more optimal in space vs false positives to get this false
   * positive rate by going for k==13, and m==18.5n, but we also want to
   * conserve CPU, and k==13 is pretty big.
   */
  int n_bits = 1u << (tor_log2(max_elements)+5);
  digestset_t *r = tor_malloc(sizeof(digestset_t));
  r->mask = n_bits - 1;
  r->ba = bitarray_init_zero(n_bits);
  return r;
}

/** Free all storage held in <b>set</b>. */
void
digestset_free(digestset_t *set)
{
  if (!set)
    return;
  bitarray_free(set->ba);
  tor_free(set);
}