1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
/*
* Southampton University Map App
* Copyright (C) 2011 Christopher Baines
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package net.cbaines.suma;
import java.util.Comparator;
public class StringDistanceComparator implements Comparator<POI> {
private String userString;
// private static final String TAG = "StringDistanceComparator";
public StringDistanceComparator(String userString) {
super();
this.userString = userString;
}
public int compare(POI poi1, POI poi2) {
int distTo1 = LD(userString, poi1.toString());
// Log.i(TAG, "Comparing " + userString + " and " + poi1.toString() + " got dist " + distTo1);
int distTo2 = LD(userString, poi2.toString());
// Log.i(TAG, "Comparing " + userString + " and " + poi2.toString() + " got dist " + distTo2);
return distTo1 - distTo2;
}
// Below is public domain code from http://www.merriampark.com/ld.htm
// ****************************
// Get minimum of three values
// ****************************
private int Minimum(int a, int b, int c) {
int mi;
mi = a;
if (b < mi) {
mi = b;
}
if (c < mi) {
mi = c;
}
return mi;
}
// *****************************
// Compute Levenshtein distance
// *****************************
public int LD(String s, String t) {
int d[][]; // matrix
int n; // length of s
int m; // length of t
int i; // iterates through s
int j; // iterates through t
char s_i; // ith character of s
char t_j; // jth character of t
int cost; // cost
// Step 1
n = s.length();
m = t.length();
if (n == 0) {
return m;
}
if (m == 0) {
return n;
}
d = new int[n + 1][m + 1];
// Step 2
for (i = 0; i <= n; i++) {
d[i][0] = i;
}
for (j = 0; j <= m; j++) {
d[0][j] = j;
}
// Step 3
for (i = 1; i <= n; i++) {
s_i = s.charAt(i - 1);
// Step 4
for (j = 1; j <= m; j++) {
t_j = t.charAt(j - 1);
// Step 5
if (s_i == t_j) {
cost = 0;
} else {
cost = 1;
}
// Step 6
d[i][j] = Minimum(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + cost);
}
}
// Step 7
return d[n][m];
}
}
|