summaryrefslogtreecommitdiff
path: root/sklearn_pandas/dataframe_mapper.py
diff options
context:
space:
mode:
Diffstat (limited to 'sklearn_pandas/dataframe_mapper.py')
-rw-r--r--sklearn_pandas/dataframe_mapper.py132
1 files changed, 132 insertions, 0 deletions
diff --git a/sklearn_pandas/dataframe_mapper.py b/sklearn_pandas/dataframe_mapper.py
new file mode 100644
index 0000000..9a59f6d
--- /dev/null
+++ b/sklearn_pandas/dataframe_mapper.py
@@ -0,0 +1,132 @@
+import sys
+import pandas as pd
+import numpy as np
+from scipy import sparse
+from sklearn.base import BaseEstimator, TransformerMixin
+
+from .cross_validation import DataWrapper
+from .pipeline import make_transformer_pipeline
+
+# load in the correct stringtype: str for py3, basestring for py2
+string_types = str if sys.version_info >= (3, 0) else basestring
+
+
+def _handle_feature(fea):
+ """
+ Convert 1-dimensional arrays to 2-dimensional column vectors.
+ """
+ if len(fea.shape) == 1:
+ fea = np.array([fea]).T
+
+ return fea
+
+
+def _build_transformer(transformers):
+ if isinstance(transformers, list):
+ transformers = make_transformer_pipeline(*transformers)
+ return transformers
+
+
+class DataFrameMapper(BaseEstimator, TransformerMixin):
+ """
+ Map Pandas data frame column subsets to their own
+ sklearn transformation.
+ """
+
+ def __init__(self, features, sparse=False):
+ """
+ Params:
+
+ features a list of pairs. The first element is the pandas column
+ selector. This can be a string (for one column) or a list
+ of strings. The second element is an object that supports
+ sklearn's transform interface, or a list of such objects.
+ sparse will return sparse matrix if set True and any of the
+ extracted features is sparse. Defaults to False.
+ """
+ if isinstance(features, list):
+ features = [(columns, _build_transformer(transformers))
+ for (columns, transformers) in features]
+ self.features = features
+ self.sparse = sparse
+
+ def __setstate__(self, state):
+ # compatibility shim for pickles created with sklearn-pandas<1.0.0
+ self.features = [(columns, _build_transformer(transformers))
+ for (columns, transformers) in state['features']]
+ self.sparse = state.get('sparse', False)
+
+ def _get_col_subset(self, X, cols):
+ """
+ Get a subset of columns from the given table X.
+
+ X a Pandas dataframe; the table to select columns from
+ cols a string or list of strings representing the columns
+ to select
+
+ Returns a numpy array with the data from the selected columns
+ """
+ return_vector = False
+ if isinstance(cols, string_types):
+ return_vector = True
+ cols = [cols]
+
+ if isinstance(X, list):
+ X = [x[cols] for x in X]
+ X = pd.DataFrame(X)
+
+ elif isinstance(X, DataWrapper):
+ # if it's a datawrapper, unwrap it
+ X = X.df
+
+ if return_vector:
+ t = X[cols[0]].values
+ else:
+ t = X[cols].values
+
+ return t
+
+ def fit(self, X, y=None):
+ """
+ Fit a transformation from the pipeline
+
+ X the data to fit
+ """
+ for columns, transformers in self.features:
+ if transformers is not None:
+ transformers.fit(self._get_col_subset(X, columns))
+ return self
+
+ def transform(self, X):
+ """
+ Transform the given data. Assumes that fit has already been called.
+
+ X the data to transform
+ """
+ extracted = []
+ for columns, transformers in self.features:
+ # columns could be a string or list of
+ # strings; we don't care because pandas
+ # will handle either.
+ Xt = self._get_col_subset(X, columns)
+ if transformers is not None:
+ Xt = transformers.transform(Xt)
+ extracted.append(_handle_feature(Xt))
+
+ # combine the feature outputs into one array.
+ # at this point we lose track of which features
+ # were created from which input columns, so it's
+ # assumed that that doesn't matter to the model.
+
+ # If any of the extracted features is sparse, combine sparsely.
+ # Otherwise, combine as normal arrays.
+ if any(sparse.issparse(fea) for fea in extracted):
+ stacked = sparse.hstack(extracted).tocsr()
+ # return a sparse matrix only if the mapper was initialized
+ # with sparse=True
+ if not self.sparse:
+ stacked = stacked.toarray()
+ else:
+ stacked = np.hstack(extracted)
+
+ return stacked