summaryrefslogtreecommitdiff
path: root/sklearn_pandas/__init__.py
diff options
context:
space:
mode:
Diffstat (limited to 'sklearn_pandas/__init__.py')
-rw-r--r--sklearn_pandas/__init__.py161
1 files changed, 3 insertions, 158 deletions
diff --git a/sklearn_pandas/__init__.py b/sklearn_pandas/__init__.py
index 0f5d94c..537ab56 100644
--- a/sklearn_pandas/__init__.py
+++ b/sklearn_pandas/__init__.py
@@ -1,159 +1,4 @@
-__version__ = '0.0.12'
+__version__ = '1.1.0'
-import numpy as np
-import pandas as pd
-from sklearn.base import BaseEstimator, TransformerMixin
-from sklearn import cross_validation
-from sklearn import grid_search
-import sys
-
-# load in the correct stringtype: str for py3, basestring for py2
-string_types = str if sys.version_info >= (3, 0) else basestring
-
-
-def cross_val_score(model, X, *args, **kwargs):
- X = DataWrapper(X)
- return cross_validation.cross_val_score(model, X, *args, **kwargs)
-
-
-class GridSearchCV(grid_search.GridSearchCV):
- def fit(self, X, *params, **kwparams):
- super(GridSearchCV, self).fit(DataWrapper(X), *params, **kwparams)
-
- def predict(self, X, *params, **kwparams):
- super(GridSearchCV, self).fit(DataWrapper(X), *params, **kwparams)
-
-
-try:
- class RandomizedSearchCV(grid_search.RandomizedSearchCV):
- def fit(self, X, *params, **kwparams):
- super(RandomizedSearchCV, self).fit(DataWrapper(X), *params, **kwparams)
-
- def predict(self, X, *params, **kwparams):
- super(RandomizedSearchCV, self).fit(DataWrapper(X), *params, **kwparams)
-except AttributeError:
- pass
-
-
-class DataWrapper(object):
- def __init__(self, df):
- self.df = df
-
- def __len__(self):
- return len(self.df)
-
- def __getitem__(self, key):
- return self.df.iloc[key]
-
-
-class PassthroughTransformer(TransformerMixin):
- def fit(self, X, y=None, **fit_params):
- return self
-
- def transform(self, X):
- return np.array(X).astype(np.float)
-
-
-def _handle_feature(fea):
- if hasattr(fea, 'toarray'):
- # sparse arrays should be converted to regular arrays
- # for hstack.
- fea = fea.toarray()
-
- if len(fea.shape) == 1:
- fea = np.array([fea]).T
-
- return fea
-
-
-class DataFrameMapper(BaseEstimator, TransformerMixin):
- """
- Map Pandas data frame column subsets to their own
- sklearn transformation.
- """
-
- def __init__(self, features):
- """
- Params:
-
- features a list of pairs. The first element is the pandas column
- selector. This can be a string (for one column) or a list
- of strings. The second element is an object that supports
- sklearn's transform interface.
- """
- self.features = features
-
- def _get_col_subset(self, X, cols):
- """
- Get a subset of columns from the given table X.
-
- X a Pandas dataframe; the table to select columns from
- cols a string or list of strings representing the columns
- to select
-
- Returns a numpy array with the data from the selected columns
- """
- return_vector = False
- if isinstance(cols, string_types):
- return_vector = True
- cols = [cols]
-
- if isinstance(X, list):
- X = [x[cols] for x in X]
- X = pd.DataFrame(X)
-
- elif isinstance(X, DataWrapper):
- # if it's a datawrapper, unwrap it
- X = X.df
-
- if return_vector:
- t = X[cols[0]].values
- else:
- t = X.as_matrix(cols)
-
- return t
-
- def fit(self, X, y=None):
- """
- Fit a transformation from the pipeline
-
- X the data to fit
- """
- for columns, transformers in self.features:
- if transformers is not None:
- if isinstance(transformers, list):
- # first fit_transform all transformers except the last one
- Xt = self._get_col_subset(X, columns)
- for transformer in transformers[:-1]:
- Xt = transformer.fit_transform(Xt)
- # then fit the last one without transformation
- transformers[-1].fit(Xt)
- else:
- transformers.fit(self._get_col_subset(X, columns))
- return self
-
- def transform(self, X):
- """
- Transform the given data. Assumes that fit has already been called.
-
- X the data to transform
- """
- extracted = []
- for columns, transformers in self.features:
- # columns could be a string or list of
- # strings; we don't care because pandas
- # will handle either.
- Xt = self._get_col_subset(X, columns)
- if transformers is not None:
- if isinstance(transformers, list):
- for transformer in transformers:
- Xt = transformer.transform(Xt)
- else:
- Xt = transformers.transform(Xt)
- extracted.append(_handle_feature(Xt))
-
- # combine the feature outputs into one array.
- # at this point we lose track of which features
- # were created from which input columns, so it's
- # assumed that that doesn't matter to the model.
- return np.hstack(extracted)
+from .dataframe_mapper import DataFrameMapper # NOQA
+from .cross_validation import cross_val_score, GridSearchCV, RandomizedSearchCV # NOQA