# Copyright (C) 2003-2005 Robey Pointer # # This file is part of paramiko. # # Paramiko is free software; you can redistribute it and/or modify it under the # terms of the GNU Lesser General Public License as published by the Free # Software Foundation; either version 2.1 of the License, or (at your option) # any later version. # # Paramiko is distrubuted in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with Paramiko; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. """ L{Transport} handles the core SSH2 protocol. """ import os import socket import string import struct import sys import threading import time import weakref from paramiko import util from paramiko.common import * from paramiko.compress import ZlibCompressor, ZlibDecompressor from paramiko.ssh_exception import SSHException, BadAuthenticationType from paramiko.message import Message from paramiko.channel import Channel from paramiko.sftp_client import SFTPClient from paramiko.packet import Packetizer, NeedRekeyException from paramiko.rsakey import RSAKey from paramiko.dsskey import DSSKey from paramiko.kex_group1 import KexGroup1 from paramiko.kex_gex import KexGex from paramiko.primes import ModulusPack from paramiko.auth_handler import AuthHandler # these come from PyCrypt # http://www.amk.ca/python/writing/pycrypt/ # i believe this on the standards track. # PyCrypt compiled for Win32 can be downloaded from the HashTar homepage: # http://nitace.bsd.uchicago.edu:8080/hashtar from Crypto.Cipher import Blowfish, AES, DES3 from Crypto.Hash import SHA, MD5, HMAC # for thread cleanup _active_threads = [] def _join_lingering_threads(): for thr in _active_threads: thr.stop_thread() import atexit atexit.register(_join_lingering_threads) class SecurityOptions (object): """ Simple object containing the security preferences of an ssh transport. These are tuples of acceptable ciphers, digests, key types, and key exchange algorithms, listed in order of preference. Changing the contents and/or order of these fields affects the underlying L{Transport} (but only if you change them before starting the session). If you try to add an algorithm that paramiko doesn't recognize, C{ValueError} will be raised. If you try to assign something besides a tuple to one of the fields, C{TypeError} will be raised. @since: ivysaur """ __slots__ = [ 'ciphers', 'digests', 'key_types', 'kex', 'compression', '_transport' ] def __init__(self, transport): self._transport = transport def __repr__(self): """ Returns a string representation of this object, for debugging. @rtype: str """ return '' % repr(self._transport) def _get_ciphers(self): return self._transport._preferred_ciphers def _get_digests(self): return self._transport._preferred_macs def _get_key_types(self): return self._transport._preferred_keys def _get_kex(self): return self._transport._preferred_kex def _get_compression(self): return self._transport._preferred_compression def _set(self, name, orig, x): if type(x) is list: x = tuple(x) if type(x) is not tuple: raise TypeError('expected tuple or list') possible = getattr(self._transport, orig).keys() if len(filter(lambda n: n not in possible, x)) > 0: raise ValueError('unknown cipher') setattr(self._transport, name, x) def _set_ciphers(self, x): self._set('_preferred_ciphers', '_cipher_info', x) def _set_digests(self, x): self._set('_preferred_macs', '_mac_info', x) def _set_key_types(self, x): self._set('_preferred_keys', '_key_info', x) def _set_kex(self, x): self._set('_preferred_kex', '_kex_info', x) def _set_compression(self, x): self._set('_preferred_compression', '_compression_info', x) ciphers = property(_get_ciphers, _set_ciphers, None, "Symmetric encryption ciphers") digests = property(_get_digests, _set_digests, None, "Digest (one-way hash) algorithms") key_types = property(_get_key_types, _set_key_types, None, "Public-key algorithms") kex = property(_get_kex, _set_kex, None, "Key exchange algorithms") compression = property(_get_compression, _set_compression, None, "Compression algorithms") class Transport (threading.Thread): """ An SSH Transport attaches to a stream (usually a socket), negotiates an encrypted session, authenticates, and then creates stream tunnels, called L{Channel}s, across the session. Multiple channels can be multiplexed across a single session (and often are, in the case of port forwardings). """ _PROTO_ID = '2.0' _CLIENT_ID = 'paramiko_1.5.2' _preferred_ciphers = ( 'aes128-cbc', 'blowfish-cbc', 'aes256-cbc', '3des-cbc' ) _preferred_macs = ( 'hmac-sha1', 'hmac-md5', 'hmac-sha1-96', 'hmac-md5-96' ) _preferred_keys = ( 'ssh-rsa', 'ssh-dss' ) _preferred_kex = ( 'diffie-hellman-group1-sha1', 'diffie-hellman-group-exchange-sha1' ) _preferred_compression = ( 'none', ) _cipher_info = { 'blowfish-cbc': { 'class': Blowfish, 'mode': Blowfish.MODE_CBC, 'block-size': 8, 'key-size': 16 }, 'aes128-cbc': { 'class': AES, 'mode': AES.MODE_CBC, 'block-size': 16, 'key-size': 16 }, 'aes256-cbc': { 'class': AES, 'mode': AES.MODE_CBC, 'block-size': 16, 'key-size': 32 }, '3des-cbc': { 'class': DES3, 'mode': DES3.MODE_CBC, 'block-size': 8, 'key-size': 24 }, } _mac_info = { 'hmac-sha1': { 'class': SHA, 'size': 20 }, 'hmac-sha1-96': { 'class': SHA, 'size': 12 }, 'hmac-md5': { 'class': MD5, 'size': 16 }, 'hmac-md5-96': { 'class': MD5, 'size': 12 }, } _key_info = { 'ssh-rsa': RSAKey, 'ssh-dss': DSSKey, } _kex_info = { 'diffie-hellman-group1-sha1': KexGroup1, 'diffie-hellman-group-exchange-sha1': KexGex, } _compression_info = { # zlib@openssh.com is just zlib, but only turned on after a successful # authentication. openssh servers may only offer this type because # they've had troubles with security holes in zlib in the past. 'zlib@openssh.com': ( ZlibCompressor, ZlibDecompressor ), 'zlib': ( ZlibCompressor, ZlibDecompressor ), 'none': ( None, None ), } _modulus_pack = None def __init__(self, sock): """ Create a new SSH session over an existing socket, or socket-like object. This only creates the Transport object; it doesn't begin the SSH session yet. Use L{connect} or L{start_client} to begin a client session, or L{start_server} to begin a server session. If the object is not actually a socket, it must have the following methods: - C{send(str)}: Writes from 1 to C{len(str)} bytes, and returns an int representing the number of bytes written. Returns 0 or raises C{EOFError} if the stream has been closed. - C{recv(int)}: Reads from 1 to C{int} bytes and returns them as a string. Returns 0 or raises C{EOFError} if the stream has been closed. - C{close()}: Closes the socket. - C{settimeout(n)}: Sets a (float) timeout on I/O operations. For ease of use, you may also pass in an address (as a tuple) or a host string as the C{sock} argument. (A host string is a hostname with an optional port (separated by C{":"}) which will be converted into a tuple of C{(hostname, port)}.) A socket will be connected to this address and used for communication. Exceptions from the C{socket} call may be thrown in this case. @param sock: a socket or socket-like object to create the session over. @type sock: socket """ if type(sock) is str: # convert "host:port" into (host, port) hl = sock.split(':', 1) if len(hl) == 1: sock = (hl[0], 22) else: sock = (hl[0], int(hl[1])) if type(sock) is tuple: # connect to the given (host, port) hostname, port = sock sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((hostname, port)) # okay, normal socket-ish flow here... threading.Thread.__init__(self) self.randpool = randpool self.sock = sock # Python < 2.3 doesn't have the settimeout method - RogerB try: # we set the timeout so we can check self.active periodically to # see if we should bail. socket.timeout exception is never # propagated. self.sock.settimeout(0.1) except AttributeError: pass # negotiated crypto parameters self.packetizer = Packetizer(sock) self.local_version = 'SSH-' + self._PROTO_ID + '-' + self._CLIENT_ID self.remote_version = '' self.local_cipher = self.remote_cipher = '' self.local_kex_init = self.remote_kex_init = None self.session_id = None # /negotiated crypto parameters self.expected_packet = 0 self.active = False self.initial_kex_done = False self.in_kex = False self.lock = threading.Lock() # synchronization (always higher level than write_lock) self.channels = weakref.WeakValueDictionary() # (id -> Channel) self.channel_events = { } # (id -> Event) self.channels_seen = { } # (id -> True) self.channel_counter = 1 self.window_size = 65536 self.max_packet_size = 34816 self.saved_exception = None self.clear_to_send = threading.Event() self.clear_to_send_lock = threading.Lock() self.log_name = 'paramiko.transport' self.logger = util.get_logger(self.log_name) self.packetizer.set_log(self.logger) self.auth_handler = None self.authenticated = False # user-defined event callbacks: self.completion_event = None # server mode: self.server_mode = False self.server_object = None self.server_key_dict = { } self.server_accepts = [ ] self.server_accept_cv = threading.Condition(self.lock) self.subsystem_table = { } def __del__(self): self.close() def __repr__(self): """ Returns a string representation of this object, for debugging. @rtype: str """ out = '} or L{auth_publickey }. @note: L{connect} is a simpler method for connecting as a client. @note: After calling this method (or L{start_server} or L{connect}), you should no longer directly read from or write to the original socket object. @param event: an event to trigger when negotiation is complete (optional) @type event: threading.Event @raise SSHException: if negotiation fails (and no C{event} was passed in) """ self.active = True if event is not None: # async, return immediately and let the app poll for completion self.completion_event = event self.start() return # synchronous, wait for a result self.completion_event = event = threading.Event() self.start() while True: event.wait(0.1) if not self.active: e = self.get_exception() if e is not None: raise e raise SSHException('Negotiation failed.') if event.isSet(): break def start_server(self, event=None, server=None): """ Negotiate a new SSH2 session as a server. This is the first step after creating a new L{Transport} and setting up your server host key(s). A separate thread is created for protocol negotiation. If an event is passed in, this method returns immediately. When negotiation is done (successful or not), the given C{Event} will be triggered. On failure, L{is_active} will return C{False}. (Since 1.4) If C{event} is C{None}, this method will not return until negotation is done. On success, the method returns normally. Otherwise an SSHException is raised. After a successful negotiation, the client will need to authenticate. Override the methods L{get_allowed_auths }, L{check_auth_none }, L{check_auth_password }, and L{check_auth_publickey } in the given C{server} object to control the authentication process. After a successful authentication, the client should request to open a channel. Override L{check_channel_request } in the given C{server} object to allow channels to be opened. @note: After calling this method (or L{start_client} or L{connect}), you should no longer directly read from or write to the original socket object. @param event: an event to trigger when negotiation is complete. @type event: threading.Event @param server: an object used to perform authentication and create L{Channel}s. @type server: L{server.ServerInterface} @raise SSHException: if negotiation fails (and no C{event} was passed in) """ if server is None: server = ServerInterface() self.server_mode = True self.server_object = server self.active = True if event is not None: # async, return immediately and let the app poll for completion self.completion_event = event self.start() return # synchronous, wait for a result self.completion_event = event = threading.Event() self.start() while True: event.wait(0.1) if not self.active: e = self.get_exception() if e is not None: raise e raise SSHException('Negotiation failed.') if event.isSet(): break def add_server_key(self, key): """ Add a host key to the list of keys used for server mode. When behaving as a server, the host key is used to sign certain packets during the SSH2 negotiation, so that the client can trust that we are who we say we are. Because this is used for signing, the key must contain private key info, not just the public half. Only one key of each type (RSA or DSS) is kept. @param key: the host key to add, usually an L{RSAKey } or L{DSSKey }. @type key: L{PKey } """ self.server_key_dict[key.get_name()] = key def get_server_key(self): """ Return the active host key, in server mode. After negotiating with the client, this method will return the negotiated host key. If only one type of host key was set with L{add_server_key}, that's the only key that will ever be returned. But in cases where you have set more than one type of host key (for example, an RSA key and a DSS key), the key type will be negotiated by the client, and this method will return the key of the type agreed on. If the host key has not been negotiated yet, C{None} is returned. In client mode, the behavior is undefined. @return: host key of the type negotiated by the client, or C{None}. @rtype: L{PKey } """ try: return self.server_key_dict[self.host_key_type] except KeyError: return None def load_server_moduli(filename=None): """ I{(optional)} Load a file of prime moduli for use in doing group-exchange key negotiation in server mode. It's a rather obscure option and can be safely ignored. In server mode, the remote client may request "group-exchange" key negotiation, which asks the server to send a random prime number that fits certain criteria. These primes are pretty difficult to compute, so they can't be generated on demand. But many systems contain a file of suitable primes (usually named something like C{/etc/ssh/moduli}). If you call C{load_server_moduli} and it returns C{True}, then this file of primes has been loaded and we will support "group-exchange" in server mode. Otherwise server mode will just claim that it doesn't support that method of key negotiation. @param filename: optional path to the moduli file, if you happen to know that it's not in a standard location. @type filename: str @return: True if a moduli file was successfully loaded; False otherwise. @rtype: bool @since: doduo @note: This has no effect when used in client mode. """ Transport._modulus_pack = ModulusPack(randpool) # places to look for the openssh "moduli" file file_list = [ '/etc/ssh/moduli', '/usr/local/etc/moduli' ] if filename is not None: file_list.insert(0, filename) for fn in file_list: try: Transport._modulus_pack.read_file(fn) return True except IOError: pass # none succeeded Transport._modulus_pack = None return False load_server_moduli = staticmethod(load_server_moduli) def close(self): """ Close this session, and any open channels that are tied to it. """ self.active = False # since this may be called from __del__, can't assume any attributes exist try: self.packetizer.close() for chan in self.channels.values(): chan._unlink() except AttributeError: pass def get_remote_server_key(self): """ Return the host key of the server (in client mode). @note: Previously this call returned a tuple of (key type, key string). You can get the same effect by calling L{PKey.get_name } for the key type, and C{str(key)} for the key string. @raise SSHException: if no session is currently active. @return: public key of the remote server. @rtype: L{PKey } """ if (not self.active) or (not self.initial_kex_done): raise SSHException('No existing session') return self.host_key def is_active(self): """ Return true if this session is active (open). @return: True if the session is still active (open); False if the session is closed. @rtype: bool """ return self.active def open_session(self): """ Request a new channel to the server, of type C{"session"}. This is just an alias for C{open_channel('session')}. @return: a new L{Channel} on success, or C{None} if the request is rejected or the session ends prematurely. @rtype: L{Channel} """ return self.open_channel('session') def open_channel(self, kind, dest_addr=None, src_addr=None): """ Request a new channel to the server. L{Channel}s are socket-like objects used for the actual transfer of data across the session. You may only request a channel after negotiating encryption (using L{connect} or L{start_client}) and authenticating. @param kind: the kind of channel requested (usually C{"session"}, C{"forwarded-tcpip"} or C{"direct-tcpip"}). @type kind: str @param dest_addr: the destination address of this port forwarding, if C{kind} is C{"forwarded-tcpip"} or C{"direct-tcpip"} (ignored for other channel types). @type dest_addr: (str, int) @param src_addr: the source address of this port forwarding, if C{kind} is C{"forwarded-tcpip"} or C{"direct-tcpip"}. @type src_addr: (str, int) @return: a new L{Channel} on success, or C{None} if the request is rejected or the session ends prematurely. @rtype: L{Channel} """ chan = None if not self.active: # don't bother trying to allocate a channel return None self.lock.acquire() try: chanid = self.channel_counter while self.channels.has_key(chanid): self.channel_counter = (self.channel_counter + 1) & 0xffffff chanid = self.channel_counter self.channel_counter = (self.channel_counter + 1) & 0xffffff m = Message() m.add_byte(chr(MSG_CHANNEL_OPEN)) m.add_string(kind) m.add_int(chanid) m.add_int(self.window_size) m.add_int(self.max_packet_size) if (kind == 'forwarded-tcpip') or (kind == 'direct-tcpip'): m.add_string(dest_addr[0]) m.add_int(dest_addr[1]) m.add_string(src_addr[0]) m.add_int(src_addr[1]) self.channels[chanid] = chan = Channel(chanid) self.channel_events[chanid] = event = threading.Event() self.channels_seen[chanid] = True chan._set_transport(self) chan._set_window(self.window_size, self.max_packet_size) finally: self.lock.release() self._send_user_message(m) while 1: event.wait(0.1); if not self.active: return None if event.isSet(): break try: self.lock.acquire() if not self.channels.has_key(chanid): chan = None finally: self.lock.release() return chan def open_sftp_client(self): """ Create an SFTP client channel from an open transport. On success, an SFTP session will be opened with the remote host, and a new SFTPClient object will be returned. @return: a new L{SFTPClient} object, referring to an sftp session (channel) across this transport @rtype: L{SFTPClient} """ return SFTPClient.from_transport(self) def send_ignore(self, bytes=None): """ Send a junk packet across the encrypted link. This is sometimes used to add "noise" to a connection to confuse would-be attackers. It can also be used as a keep-alive for long lived connections traversing firewalls. @param bytes: the number of random bytes to send in the payload of the ignored packet -- defaults to a random number from 10 to 41. @type bytes: int @since: fearow """ m = Message() m.add_byte(chr(MSG_IGNORE)) randpool.stir() if bytes is None: bytes = (ord(randpool.get_bytes(1)) % 32) + 10 m.add_bytes(randpool.get_bytes(bytes)) self._send_user_message(m) def renegotiate_keys(self): """ Force this session to switch to new keys. Normally this is done automatically after the session hits a certain number of packets or bytes sent or received, but this method gives you the option of forcing new keys whenever you want. Negotiating new keys causes a pause in traffic both ways as the two sides swap keys and do computations. This method returns when the session has switched to new keys, or the session has died mid-negotiation. @return: True if the renegotiation was successful, and the link is using new keys; False if the session dropped during renegotiation. @rtype: bool """ self.completion_event = threading.Event() self._send_kex_init() while 1: self.completion_event.wait(0.1); if not self.active: return False if self.completion_event.isSet(): break return True def set_keepalive(self, interval): """ Turn on/off keepalive packets (default is off). If this is set, after C{interval} seconds without sending any data over the connection, a "keepalive" packet will be sent (and ignored by the remote host). This can be useful to keep connections alive over a NAT, for example. @param interval: seconds to wait before sending a keepalive packet (or 0 to disable keepalives). @type interval: int @since: fearow """ self.packetizer.set_keepalive(interval, lambda x=self: x.global_request('keepalive@lag.net', wait=False)) def global_request(self, kind, data=None, wait=True): """ Make a global request to the remote host. These are normally extensions to the SSH2 protocol. @param kind: name of the request. @type kind: str @param data: an optional tuple containing additional data to attach to the request. @type data: tuple @param wait: C{True} if this method should not return until a response is received; C{False} otherwise. @type wait: bool @return: a L{Message} containing possible additional data if the request was successful (or an empty L{Message} if C{wait} was C{False}); C{None} if the request was denied. @rtype: L{Message} @since: fearow """ if wait: self.completion_event = threading.Event() m = Message() m.add_byte(chr(MSG_GLOBAL_REQUEST)) m.add_string(kind) m.add_boolean(wait) if data is not None: m.add(*data) self._log(DEBUG, 'Sending global request "%s"' % kind) self._send_user_message(m) if not wait: return None while True: self.completion_event.wait(0.1) if not self.active: return None if self.completion_event.isSet(): break return self.global_response def accept(self, timeout=None): """ Return the next channel opened by the client over this transport, in server mode. If no channel is opened before the given timeout, C{None} is returned. @param timeout: seconds to wait for a channel, or C{None} to wait forever @type timeout: int @return: a new Channel opened by the client @rtype: L{Channel} """ self.lock.acquire() try: if len(self.server_accepts) > 0: chan = self.server_accepts.pop(0) else: self.server_accept_cv.wait(timeout) if len(self.server_accepts) > 0: chan = self.server_accepts.pop(0) else: # timeout chan = None finally: self.lock.release() return chan def connect(self, hostkey=None, username='', password=None, pkey=None): """ Negotiate an SSH2 session, and optionally verify the server's host key and authenticate using a password or private key. This is a shortcut for L{start_client}, L{get_remote_server_key}, and L{Transport.auth_password} or L{Transport.auth_publickey}. Use those methods if you want more control. You can use this method immediately after creating a Transport to negotiate encryption with a server. If it fails, an exception will be thrown. On success, the method will return cleanly, and an encrypted session exists. You may immediately call L{open_channel} or L{open_session} to get a L{Channel} object, which is used for data transfer. @note: If you fail to supply a password or private key, this method may succeed, but a subsequent L{open_channel} or L{open_session} call may fail because you haven't authenticated yet. @param hostkey: the host key expected from the server, or C{None} if you don't want to do host key verification. @type hostkey: L{PKey} @param username: the username to authenticate as. @type username: str @param password: a password to use for authentication, if you want to use password authentication; otherwise C{None}. @type password: str @param pkey: a private key to use for authentication, if you want to use private key authentication; otherwise C{None}. @type pkey: L{PKey} @raise SSHException: if the SSH2 negotiation fails, the host key supplied by the server is incorrect, or authentication fails. @since: doduo """ if hostkey is not None: self._preferred_keys = [ hostkey.get_name() ] self.start_client() # check host key if we were given one if (hostkey is not None): key = self.get_remote_server_key() if (key.get_name() != hostkey.get_name()) or (str(key) != str(hostkey)): self._log(DEBUG, 'Bad host key from server') self._log(DEBUG, 'Expected: %s: %s' % (hostkey.get_name(), repr(str(hostkey)))) self._log(DEBUG, 'Got : %s: %s' % (key.get_name(), repr(str(key)))) raise SSHException('Bad host key from server') self._log(DEBUG, 'Host key verified (%s)' % hostkey.get_name()) if (pkey is not None) or (password is not None): if password is not None: self._log(DEBUG, 'Attempting password auth...') self.auth_password(username, password) else: self._log(DEBUG, 'Attempting public-key auth...') self.auth_publickey(username, pkey) return def get_exception(self): """ Return any exception that happened during the last server request. This can be used to fetch more specific error information after using calls like L{start_client}. The exception (if any) is cleared after this call. @return: an exception, or C{None} if there is no stored exception. @rtype: Exception @since: 1.1 """ self.lock.acquire() try: e = self.saved_exception self.saved_exception = None return e finally: self.lock.release() def set_subsystem_handler(self, name, handler, *larg, **kwarg): """ Set the handler class for a subsystem in server mode. If a request for this subsystem is made on an open ssh channel later, this handler will be constructed and called -- see L{SubsystemHandler} for more detailed documentation. Any extra parameters (including keyword arguments) are saved and passed to the L{SubsystemHandler} constructor later. @param name: name of the subsystem. @type name: str @param handler: subclass of L{SubsystemHandler} that handles this subsystem. @type handler: class """ try: self.lock.acquire() self.subsystem_table[name] = (handler, larg, kwarg) finally: self.lock.release() def is_authenticated(self): """ Return true if this session is active and authenticated. @return: True if the session is still open and has been authenticated successfully; False if authentication failed and/or the session is closed. @rtype: bool """ return self.active and (self.auth_handler is not None) and self.auth_handler.is_authenticated() def get_username(self): """ Return the username this connection is authenticated for. If the session is not authenticated (or authentication failed), this method returns C{None}. @return: username that was authenticated, or C{None}. @rtype: string @since: fearow """ if not self.active or (self.auth_handler is None): return None return self.auth_handler.get_username() def auth_none(self, username): """ Try to authenticate to the server using no authentication at all. This will almost always fail. It may be useful for determining the list of authentication types supported by the server, by catching the L{BadAuthenticationType} exception raised. @param username: the username to authenticate as @type username: string @return: list of auth types permissible for the next stage of authentication (normally empty) @rtype: list @raise BadAuthenticationType: if "none" authentication isn't allowed by the server for this user @raise SSHException: if the authentication failed due to a network error @since: 1.5 """ if (not self.active) or (not self.initial_kex_done): raise SSHException('No existing session') my_event = threading.Event() self.auth_handler = AuthHandler(self) self.auth_handler.auth_none(username, my_event) return self.auth_handler.wait_for_response(my_event) def auth_password(self, username, password, event=None, fallback=True): """ Authenticate to the server using a password. The username and password are sent over an encrypted link. If an C{event} is passed in, this method will return immediately, and the event will be triggered once authentication succeeds or fails. On success, L{is_authenticated} will return C{True}. On failure, you may use L{get_exception} to get more detailed error information. Since 1.1, if no event is passed, this method will block until the authentication succeeds or fails. On failure, an exception is raised. Otherwise, the method simply returns. Since 1.5, if no event is passed and C{fallback} is C{True} (the default), if the server doesn't support plain password authentication but does support so-called "keyboard-interactive" mode, an attempt will be made to authenticate using this interactive mode. If it fails, the normal exception will be thrown as if the attempt had never been made. This is useful for some recent Gentoo and Debian distributions, which turn off plain password authentication in a misguided belief that interactive authentication is "more secure". (It's not.) If the server requires multi-step authentication (which is very rare), this method will return a list of auth types permissible for the next step. Otherwise, in the normal case, an empty list is returned. @param username: the username to authenticate as @type username: string @param password: the password to authenticate with @type password: string @param event: an event to trigger when the authentication attempt is complete (whether it was successful or not) @type event: threading.Event @param fallback: C{True} if an attempt at an automated "interactive" password auth should be made if the server doesn't support normal password auth @type fallback: bool @return: list of auth types permissible for the next stage of authentication (normally empty) @rtype: list @raise BadAuthenticationType: if password authentication isn't allowed by the server for this user (and no event was passed in) @raise SSHException: if the authentication failed (and no event was passed in) """ if (not self.active) or (not self.initial_kex_done): # we should never try to send the password unless we're on a secure link raise SSHException('No existing session') if event is None: my_event = threading.Event() else: my_event = event self.auth_handler = AuthHandler(self) self.auth_handler.auth_password(username, password, my_event) if event is not None: # caller wants to wait for event themselves return [] try: return self.auth_handler.wait_for_response(my_event) except BadAuthenticationType, x: # if password auth isn't allowed, but keyboard-interactive *is*, try to fudge it if not fallback or not 'keyboard-interactive' in x.allowed_types: raise try: def handler(title, instructions, fields): if len(fields) > 1: raise SSHException('Fallback authentication failed.') if len(fields) == 0: # for some reason, at least on os x, a 2nd request will # be made with zero fields requested. maybe it's just # to try to fake out automated scripting of the exact # type we're doing here. *shrug* :) return [] return [ password ] return self.auth_interactive(username, handler) except SSHException, ignored: # attempt failed; just raise the original exception raise x def auth_publickey(self, username, key, event=None): """ Authenticate to the server using a private key. The key is used to sign data from the server, so it must include the private part. If an C{event} is passed in, this method will return immediately, and the event will be triggered once authentication succeeds or fails. On success, L{is_authenticated} will return C{True}. On failure, you may use L{get_exception} to get more detailed error information. Since 1.1, if no event is passed, this method will block until the authentication succeeds or fails. On failure, an exception is raised. Otherwise, the method simply returns. If the server requires multi-step authentication (which is very rare), this method will return a list of auth types permissible for the next step. Otherwise, in the normal case, an empty list is returned. @param username: the username to authenticate as @type username: string @param key: the private key to authenticate with @type key: L{PKey } @param event: an event to trigger when the authentication attempt is complete (whether it was successful or not) @type event: threading.Event @return: list of auth types permissible for the next stage of authentication (normally empty). @rtype: list @raise BadAuthenticationType: if public-key authentication isn't allowed by the server for this user (and no event was passed in). @raise SSHException: if the authentication failed (and no event was passed in). """ if (not self.active) or (not self.initial_kex_done): # we should never try to authenticate unless we're on a secure link raise SSHException('No existing session') if event is None: my_event = threading.Event() else: my_event = event self.auth_handler = AuthHandler(self) self.auth_handler.auth_publickey(username, key, my_event) if event is not None: # caller wants to wait for event themselves return [] return self.auth_handler.wait_for_response(my_event) def auth_interactive(self, username, handler, submethods=''): """ Authenticate to the server interactively. A handler is used to answer arbitrary questions from the server. On many servers, this is just a dumb wrapper around PAM. This method will block until the authentication succeeds or fails, peroidically calling the handler asynchronously to get answers to authentication questions. The handler may be called more than once if the server continues to ask questions. The handler is expected to be a callable that will handle calls of the form: C{handler(title, instructions, prompt_list)}. The C{title} is meant to be a dialog-window title, and the C{instructions} are user instructions (both are strings). C{prompt_list} will be a list of prompts, each prompt being a tuple of C{(str, bool)}. The string is the prompt and the boolean indicates whether the user text should be echoed. A sample call would thus be: C{handler('title', 'instructions', [('Password:', False)])}. The handler should return a list or tuple of answers to the server's questions. If the server requires multi-step authentication (which is very rare), this method will return a list of auth types permissible for the next step. Otherwise, in the normal case, an empty list is returned. @param username: the username to authenticate as @type username: string @param handler: a handler for responding to server questions @type handler: callable @param submethods: a string list of desired submethods (optional) @type submethods: str @return: list of auth types permissible for the next stage of authentication (normally empty). @rtype: list @raise BadAuthenticationType: if public-key authentication isn't allowed by the server for this user @raise SSHException: if the authentication failed @since: 1.5 """ if (not self.active) or (not self.initial_kex_done): # we should never try to authenticate unless we're on a secure link raise SSHException('No existing session') my_event = threading.Event() self.auth_handler = AuthHandler(self) self.auth_handler.auth_interactive(username, handler, my_event, submethods) return self.auth_handler.wait_for_response(my_event) def set_log_channel(self, name): """ Set the channel for this transport's logging. The default is C{"paramiko.transport"} but it can be set to anything you want. (See the C{logging} module for more info.) SSH Channels will log to a sub-channel of the one specified. @param name: new channel name for logging. @type name: str @since: 1.1 """ self.log_name = name self.logger = util.get_logger(name) def get_log_channel(self): """ Return the channel name used for this transport's logging. @return: channel name. @rtype: str @since: 1.2 """ return self.log_name def set_hexdump(self, hexdump): """ Turn on/off logging a hex dump of protocol traffic at DEBUG level in the logs. Normally you would want this off (which is the default), but if you are debugging something, it may be useful. @param hexdump: C{True} to log protocol traffix (in hex) to the log; C{False} otherwise. @type hexdump: bool """ self.packetizer.set_hexdump(hexdump) def get_hexdump(self): """ Return C{True} if the transport is currently logging hex dumps of protocol traffic. @return: C{True} if hex dumps are being logged @rtype: bool @since: 1.4 """ return self.packetizer.get_hexdump() def use_compression(self, compress=True): """ Turn on/off compression. This will only have an affect before starting the transport (ie before calling L{connect}, etc). By default, compression is off since it negatively affects interactive sessions and is not fully tested. @param compress: C{True} to ask the remote client/server to compress traffic; C{False} to refuse compression @type compress: bool @since: 1.5.2 """ if compress: self._preferred_compression = ( 'zlib@openssh.com', 'zlib', 'none' ) else: self._preferred_compression = ( 'none', ) def stop_thread(self): self.active = False self.packetizer.close() ### internals... def _log(self, level, msg): if issubclass(type(msg), list): for m in msg: self.logger.log(level, m) else: self.logger.log(level, msg) def _get_modulus_pack(self): "used by KexGex to find primes for group exchange" return self._modulus_pack def _unlink_channel(self, chanid): "used by a Channel to remove itself from the active channel list" try: self.lock.acquire() if self.channels.has_key(chanid): del self.channels[chanid] finally: self.lock.release() def _send_message(self, data): self.packetizer.send_message(data) def _send_user_message(self, data): """ send a message, but block if we're in key negotiation. this is used for user-initiated requests. """ while True: self.clear_to_send.wait(0.1) if not self.active: self._log(DEBUG, 'Dropping user packet because connection is dead.') return self.clear_to_send_lock.acquire() if self.clear_to_send.isSet(): break self.clear_to_send_lock.release() try: self._send_message(data) finally: self.clear_to_send_lock.release() def _set_K_H(self, k, h): "used by a kex object to set the K (root key) and H (exchange hash)" self.K = k self.H = h if self.session_id == None: self.session_id = h def _expect_packet(self, type): "used by a kex object to register the next packet type it expects to see" self.expected_packet = type def _verify_key(self, host_key, sig): key = self._key_info[self.host_key_type](Message(host_key)) if key is None: raise SSHException('Unknown host key type') if not key.verify_ssh_sig(self.H, Message(sig)): raise SSHException('Signature verification (%s) failed. Boo. Robey should debug this.' % self.host_key_type) self.host_key = key def _compute_key(self, id, nbytes): "id is 'A' - 'F' for the various keys used by ssh" m = Message() m.add_mpint(self.K) m.add_bytes(self.H) m.add_byte(id) m.add_bytes(self.session_id) out = sofar = SHA.new(str(m)).digest() while len(out) < nbytes: m = Message() m.add_mpint(self.K) m.add_bytes(self.H) m.add_bytes(sofar) hash = SHA.new(str(m)).digest() out += hash sofar += hash return out[:nbytes] def _get_cipher(self, name, key, iv): if not self._cipher_info.has_key(name): raise SSHException('Unknown client cipher ' + name) return self._cipher_info[name]['class'].new(key, self._cipher_info[name]['mode'], iv) def run(self): # (use the exposed "run" method, because if we specify a thread target # of a private method, threading.Thread will keep a reference to it # indefinitely, creating a GC cycle and not letting Transport ever be # GC'd. it's a bug in Thread.) # active=True occurs before the thread is launched, to avoid a race _active_threads.append(self) if self.server_mode: self._log(DEBUG, 'starting thread (server mode): %s' % hex(long(id(self)) & 0xffffffffL)) else: self._log(DEBUG, 'starting thread (client mode): %s' % hex(long(id(self)) & 0xffffffffL)) try: self.packetizer.write_all(self.local_version + '\r\n') self._check_banner() self._send_kex_init() self.expected_packet = MSG_KEXINIT while self.active: if self.packetizer.need_rekey() and not self.in_kex: self._send_kex_init() try: ptype, m = self.packetizer.read_message() except NeedRekeyException: continue if ptype == MSG_IGNORE: continue elif ptype == MSG_DISCONNECT: self._parse_disconnect(m) self.active = False self.packetizer.close() break elif ptype == MSG_DEBUG: self._parse_debug(m) continue if self.expected_packet != 0: if ptype != self.expected_packet: raise SSHException('Expecting packet %d, got %d' % (self.expected_packet, ptype)) self.expected_packet = 0 if (ptype >= 30) and (ptype <= 39): self.kex_engine.parse_next(ptype, m) continue if self._handler_table.has_key(ptype): self._handler_table[ptype](self, m) elif self._channel_handler_table.has_key(ptype): chanid = m.get_int() if self.channels.has_key(chanid): self._channel_handler_table[ptype](self.channels[chanid], m) elif self.channels_seen.has_key(chanid): self._log(DEBUG, 'Ignoring message for dead channel %d' % chanid) else: self._log(ERROR, 'Channel request for unknown channel %d' % chanid) self.active = False self.packetizer.close() elif (self.auth_handler is not None) and self.auth_handler._handler_table.has_key(ptype): self.auth_handler._handler_table[ptype](self.auth_handler, m) else: self._log(WARNING, 'Oops, unhandled type %d' % ptype) msg = Message() msg.add_byte(chr(MSG_UNIMPLEMENTED)) msg.add_int(m.seqno) self._send_message(msg) except SSHException, e: self._log(ERROR, 'Exception: ' + str(e)) self._log(ERROR, util.tb_strings()) self.saved_exception = e except EOFError, e: self._log(DEBUG, 'EOF in transport thread') #self._log(DEBUG, util.tb_strings()) self.saved_exception = e except socket.error, e: if type(e.args) is tuple: emsg = '%s (%d)' % (e.args[1], e.args[0]) else: emsg = e.args self._log(ERROR, 'Socket exception: ' + emsg) self.saved_exception = e except Exception, e: self._log(ERROR, 'Unknown exception: ' + str(e)) self._log(ERROR, util.tb_strings()) self.saved_exception = e _active_threads.remove(self) for chan in self.channels.values(): chan._unlink() if self.active: self.active = False self.packetizer.close() if self.completion_event != None: self.completion_event.set() if self.auth_handler is not None: self.auth_handler.abort() for event in self.channel_events.values(): event.set() self.sock.close() ### protocol stages def _negotiate_keys(self, m): # throws SSHException on anything unusual self.clear_to_send_lock.acquire() try: self.clear_to_send.clear() finally: self.clear_to_send_lock.release() if self.local_kex_init == None: # remote side wants to renegotiate self._send_kex_init() self._parse_kex_init(m) self.kex_engine.start_kex() def _check_banner(self): # this is slow, but we only have to do it once for i in range(5): # give them 5 seconds for the first line, then just 2 seconds each additional line if i == 0: timeout = 5 else: timeout = 2 try: buffer = self.packetizer.readline(timeout) except Exception, x: raise SSHException('Error reading SSH protocol banner' + str(x)) if buffer[:4] == 'SSH-': break self._log(DEBUG, 'Banner: ' + buffer) if buffer[:4] != 'SSH-': raise SSHException('Indecipherable protocol version "' + buffer + '"') # save this server version string for later self.remote_version = buffer # pull off any attached comment comment = '' i = string.find(buffer, ' ') if i >= 0: comment = buffer[i+1:] buffer = buffer[:i] # parse out version string and make sure it matches segs = buffer.split('-', 2) if len(segs) < 3: raise SSHException('Invalid SSH banner') version = segs[1] client = segs[2] if version != '1.99' and version != '2.0': raise SSHException('Incompatible version (%s instead of 2.0)' % (version,)) self._log(INFO, 'Connected (version %s, client %s)' % (version, client)) def _send_kex_init(self): """ announce to the other side that we'd like to negotiate keys, and what kind of key negotiation we support. """ self.clear_to_send_lock.acquire() try: self.clear_to_send.clear() finally: self.clear_to_send_lock.release() self.in_kex = True if self.server_mode: if (self._modulus_pack is None) and ('diffie-hellman-group-exchange-sha1' in self._preferred_kex): # can't do group-exchange if we don't have a pack of potential primes pkex = list(self.get_security_options().kex) pkex.remove('diffie-hellman-group-exchange-sha1') self.get_security_options().kex = pkex available_server_keys = filter(self.server_key_dict.keys().__contains__, self._preferred_keys) else: available_server_keys = self._preferred_keys randpool.stir() m = Message() m.add_byte(chr(MSG_KEXINIT)) m.add_bytes(randpool.get_bytes(16)) m.add_list(self._preferred_kex) m.add_list(available_server_keys) m.add_list(self._preferred_ciphers) m.add_list(self._preferred_ciphers) m.add_list(self._preferred_macs) m.add_list(self._preferred_macs) m.add_list(self._preferred_compression) m.add_list(self._preferred_compression) m.add_string('') m.add_string('') m.add_boolean(False) m.add_int(0) # save a copy for later (needed to compute a hash) self.local_kex_init = str(m) self._send_message(m) def _parse_kex_init(self, m): cookie = m.get_bytes(16) kex_algo_list = m.get_list() server_key_algo_list = m.get_list() client_encrypt_algo_list = m.get_list() server_encrypt_algo_list = m.get_list() client_mac_algo_list = m.get_list() server_mac_algo_list = m.get_list() client_compress_algo_list = m.get_list() server_compress_algo_list = m.get_list() client_lang_list = m.get_list() server_lang_list = m.get_list() kex_follows = m.get_boolean() unused = m.get_int() self._log(DEBUG, 'kex algos:' + str(kex_algo_list) + ' server key:' + str(server_key_algo_list) + \ ' client encrypt:' + str(client_encrypt_algo_list) + \ ' server encrypt:' + str(server_encrypt_algo_list) + \ ' client mac:' + str(client_mac_algo_list) + \ ' server mac:' + str(server_mac_algo_list) + \ ' client compress:' + str(client_compress_algo_list) + \ ' server compress:' + str(server_compress_algo_list) + \ ' client lang:' + str(client_lang_list) + \ ' server lang:' + str(server_lang_list) + \ ' kex follows?' + str(kex_follows)) # as a server, we pick the first item in the client's list that we support. # as a client, we pick the first item in our list that the server supports. if self.server_mode: agreed_kex = filter(self._preferred_kex.__contains__, kex_algo_list) else: agreed_kex = filter(kex_algo_list.__contains__, self._preferred_kex) if len(agreed_kex) == 0: raise SSHException('Incompatible ssh peer (no acceptable kex algorithm)') self.kex_engine = self._kex_info[agreed_kex[0]](self) if self.server_mode: available_server_keys = filter(self.server_key_dict.keys().__contains__, self._preferred_keys) agreed_keys = filter(available_server_keys.__contains__, server_key_algo_list) else: agreed_keys = filter(server_key_algo_list.__contains__, self._preferred_keys) if len(agreed_keys) == 0: raise SSHException('Incompatible ssh peer (no acceptable host key)') self.host_key_type = agreed_keys[0] if self.server_mode and (self.get_server_key() is None): raise SSHException('Incompatible ssh peer (can\'t match requested host key type)') if self.server_mode: agreed_local_ciphers = filter(self._preferred_ciphers.__contains__, server_encrypt_algo_list) agreed_remote_ciphers = filter(self._preferred_ciphers.__contains__, client_encrypt_algo_list) else: agreed_local_ciphers = filter(client_encrypt_algo_list.__contains__, self._preferred_ciphers) agreed_remote_ciphers = filter(server_encrypt_algo_list.__contains__, self._preferred_ciphers) if (len(agreed_local_ciphers) == 0) or (len(agreed_remote_ciphers) == 0): raise SSHException('Incompatible ssh server (no acceptable ciphers)') self.local_cipher = agreed_local_ciphers[0] self.remote_cipher = agreed_remote_ciphers[0] self._log(DEBUG, 'Ciphers agreed: local=%s, remote=%s' % (self.local_cipher, self.remote_cipher)) if self.server_mode: agreed_remote_macs = filter(self._preferred_macs.__contains__, client_mac_algo_list) agreed_local_macs = filter(self._preferred_macs.__contains__, server_mac_algo_list) else: agreed_local_macs = filter(client_mac_algo_list.__contains__, self._preferred_macs) agreed_remote_macs = filter(server_mac_algo_list.__contains__, self._preferred_macs) if (len(agreed_local_macs) == 0) or (len(agreed_remote_macs) == 0): raise SSHException('Incompatible ssh server (no acceptable macs)') self.local_mac = agreed_local_macs[0] self.remote_mac = agreed_remote_macs[0] if self.server_mode: agreed_remote_compression = filter(self._preferred_compression.__contains__, client_compress_algo_list) agreed_local_compression = filter(self._preferred_compression.__contains__, server_compress_algo_list) else: agreed_local_compression = filter(client_compress_algo_list.__contains__, self._preferred_compression) agreed_remote_compression = filter(server_compress_algo_list.__contains__, self._preferred_compression) if (len(agreed_local_compression) == 0) or (len(agreed_remote_compression) == 0): raise SSHException('Incompatible ssh server (no acceptable compression) %r %r %r' % (agreed_local_compression, agreed_remote_compression, self._preferred_compression)) self.local_compression = agreed_local_compression[0] self.remote_compression = agreed_remote_compression[0] self._log(DEBUG, 'using kex %s; server key type %s; cipher: local %s, remote %s; mac: local %s, remote %s; compression: local %s, remote %s' % (agreed_kex[0], self.host_key_type, self.local_cipher, self.remote_cipher, self.local_mac, self.remote_mac, self.local_compression, self.remote_compression)) # save for computing hash later... # now wait! openssh has a bug (and others might too) where there are # actually some extra bytes (one NUL byte in openssh's case) added to # the end of the packet but not parsed. turns out we need to throw # away those bytes because they aren't part of the hash. self.remote_kex_init = chr(MSG_KEXINIT) + m.get_so_far() def _activate_inbound(self): "switch on newly negotiated encryption parameters for inbound traffic" block_size = self._cipher_info[self.remote_cipher]['block-size'] if self.server_mode: IV_in = self._compute_key('A', block_size) key_in = self._compute_key('C', self._cipher_info[self.remote_cipher]['key-size']) else: IV_in = self._compute_key('B', block_size) key_in = self._compute_key('D', self._cipher_info[self.remote_cipher]['key-size']) engine = self._get_cipher(self.remote_cipher, key_in, IV_in) mac_size = self._mac_info[self.remote_mac]['size'] mac_engine = self._mac_info[self.remote_mac]['class'] # initial mac keys are done in the hash's natural size (not the potentially truncated # transmission size) if self.server_mode: mac_key = self._compute_key('E', mac_engine.digest_size) else: mac_key = self._compute_key('F', mac_engine.digest_size) self.packetizer.set_inbound_cipher(engine, block_size, mac_engine, mac_size, mac_key) compress_in = self._compression_info[self.remote_compression][1] if (compress_in is not None) and ((self.remote_compression != 'zlib@openssh.com') or self.authenticated): self._log(DEBUG, 'Switching on inbound compression ...') self.packetizer.set_inbound_compressor(compress_in()) def _activate_outbound(self): "switch on newly negotiated encryption parameters for outbound traffic" m = Message() m.add_byte(chr(MSG_NEWKEYS)) self._send_message(m) block_size = self._cipher_info[self.local_cipher]['block-size'] if self.server_mode: IV_out = self._compute_key('B', block_size) key_out = self._compute_key('D', self._cipher_info[self.local_cipher]['key-size']) else: IV_out = self._compute_key('A', block_size) key_out = self._compute_key('C', self._cipher_info[self.local_cipher]['key-size']) engine = self._get_cipher(self.local_cipher, key_out, IV_out) mac_size = self._mac_info[self.local_mac]['size'] mac_engine = self._mac_info[self.local_mac]['class'] # initial mac keys are done in the hash's natural size (not the potentially truncated # transmission size) if self.server_mode: mac_key = self._compute_key('F', mac_engine.digest_size) else: mac_key = self._compute_key('E', mac_engine.digest_size) self.packetizer.set_outbound_cipher(engine, block_size, mac_engine, mac_size, mac_key) compress_out = self._compression_info[self.local_compression][0] if (compress_out is not None) and ((self.local_compression != 'zlib@openssh.com') or self.authenticated): self._log(DEBUG, 'Switching on outbound compression ...') self.packetizer.set_outbound_compressor(compress_out()) if not self.packetizer.need_rekey(): self.in_kex = False # we always expect to receive NEWKEYS now self.expected_packet = MSG_NEWKEYS def _auth_trigger(self): self.authenticated = True # delayed initiation of compression if self.local_compression == 'zlib@openssh.com': compress_out = self._compression_info[self.local_compression][0] self._log(DEBUG, 'Switching on outbound compression ...') self.packetizer.set_outbound_compressor(compress_out()) if self.remote_compression == 'zlib@openssh.com': compress_in = self._compression_info[self.remote_compression][1] self._log(DEBUG, 'Switching on inbound compression ...') self.packetizer.set_inbound_compressor(compress_in()) def _parse_newkeys(self, m): self._log(DEBUG, 'Switch to new keys ...') self._activate_inbound() # can also free a bunch of stuff here self.local_kex_init = self.remote_kex_init = None self.K = None self.kex_engine = None if self.server_mode and (self.auth_handler is None): # create auth handler for server mode self.auth_handler = AuthHandler(self) if not self.initial_kex_done: # this was the first key exchange self.initial_kex_done = True # send an event? if self.completion_event != None: self.completion_event.set() # it's now okay to send data again (if this was a re-key) if not self.packetizer.need_rekey(): self.in_kex = False self.clear_to_send_lock.acquire() try: self.clear_to_send.set() finally: self.clear_to_send_lock.release() return def _parse_disconnect(self, m): code = m.get_int() desc = m.get_string() self._log(INFO, 'Disconnect (code %d): %s' % (code, desc)) def _parse_global_request(self, m): kind = m.get_string() self._log(DEBUG, 'Received global request "%s"' % kind) want_reply = m.get_boolean() ok = self.server_object.check_global_request(kind, m) extra = () if type(ok) is tuple: extra = ok ok = True if want_reply: msg = Message() if ok: msg.add_byte(chr(MSG_REQUEST_SUCCESS)) msg.add(*extra) else: msg.add_byte(chr(MSG_REQUEST_FAILURE)) self._send_message(msg) def _parse_request_success(self, m): self._log(DEBUG, 'Global request successful.') self.global_response = m if self.completion_event is not None: self.completion_event.set() def _parse_request_failure(self, m): self._log(DEBUG, 'Global request denied.') self.global_response = None if self.completion_event is not None: self.completion_event.set() def _parse_channel_open_success(self, m): chanid = m.get_int() server_chanid = m.get_int() server_window_size = m.get_int() server_max_packet_size = m.get_int() if not self.channels.has_key(chanid): self._log(WARNING, 'Success for unrequested channel! [??]') return self.lock.acquire() try: chan = self.channels[chanid] chan._set_remote_channel(server_chanid, server_window_size, server_max_packet_size) self._log(INFO, 'Secsh channel %d opened.' % chanid) if self.channel_events.has_key(chanid): self.channel_events[chanid].set() del self.channel_events[chanid] finally: self.lock.release() return def _parse_channel_open_failure(self, m): chanid = m.get_int() reason = m.get_int() reason_str = m.get_string() lang = m.get_string() if CONNECTION_FAILED_CODE.has_key(reason): reason_text = CONNECTION_FAILED_CODE[reason] else: reason_text = '(unknown code)' self._log(INFO, 'Secsh channel %d open FAILED: %s: %s' % (chanid, reason_str, reason_text)) try: self.lock.aquire() if self.channels.has_key(chanid): del self.channels[chanid] if self.channel_events.has_key(chanid): self.channel_events[chanid].set() del self.channel_events[chanid] finally: self.lock.release() return def _parse_channel_open(self, m): kind = m.get_string() chanid = m.get_int() initial_window_size = m.get_int() max_packet_size = m.get_int() reject = False if not self.server_mode: self._log(DEBUG, 'Rejecting "%s" channel request from server.' % kind) reject = True reason = OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED else: self.lock.acquire() try: my_chanid = self.channel_counter while self.channels.has_key(my_chanid): self.channel_counter = (self.channel_counter + 1) & 0xffffff my_chanid = self.channel_counter self.channel_counter = (self.channel_counter + 1) & 0xffffff finally: self.lock.release() reason = self.server_object.check_channel_request(kind, my_chanid) if reason != OPEN_SUCCEEDED: self._log(DEBUG, 'Rejecting "%s" channel request from client.' % kind) reject = True if reject: msg = Message() msg.add_byte(chr(MSG_CHANNEL_OPEN_FAILURE)) msg.add_int(chanid) msg.add_int(reason) msg.add_string('') msg.add_string('en') self._send_message(msg) return chan = Channel(my_chanid) try: self.lock.acquire() self.channels[my_chanid] = chan self.channels_seen[my_chanid] = True chan._set_transport(self) chan._set_window(self.window_size, self.max_packet_size) chan._set_remote_channel(chanid, initial_window_size, max_packet_size) finally: self.lock.release() m = Message() m.add_byte(chr(MSG_CHANNEL_OPEN_SUCCESS)) m.add_int(chanid) m.add_int(my_chanid) m.add_int(self.window_size) m.add_int(self.max_packet_size) self._send_message(m) self._log(INFO, 'Secsh channel %d opened.' % my_chanid) try: self.lock.acquire() self.server_accepts.append(chan) self.server_accept_cv.notify() finally: self.lock.release() def _parse_debug(self, m): always_display = m.get_boolean() msg = m.get_string() lang = m.get_string() self._log(DEBUG, 'Debug msg: ' + util.safe_string(msg)) def _get_subsystem_handler(self, name): try: self.lock.acquire() if not self.subsystem_table.has_key(name): return (None, [], {}) return self.subsystem_table[name] finally: self.lock.release() _handler_table = { MSG_NEWKEYS: _parse_newkeys, MSG_GLOBAL_REQUEST: _parse_global_request, MSG_REQUEST_SUCCESS: _parse_request_success, MSG_REQUEST_FAILURE: _parse_request_failure, MSG_CHANNEL_OPEN_SUCCESS: _parse_channel_open_success, MSG_CHANNEL_OPEN_FAILURE: _parse_channel_open_failure, MSG_CHANNEL_OPEN: _parse_channel_open, MSG_KEXINIT: _negotiate_keys, } _channel_handler_table = { MSG_CHANNEL_SUCCESS: Channel._request_success, MSG_CHANNEL_FAILURE: Channel._request_failed, MSG_CHANNEL_DATA: Channel._feed, MSG_CHANNEL_EXTENDED_DATA: Channel._feed_extended, MSG_CHANNEL_WINDOW_ADJUST: Channel._window_adjust, MSG_CHANNEL_REQUEST: Channel._handle_request, MSG_CHANNEL_EOF: Channel._handle_eof, MSG_CHANNEL_CLOSE: Channel._handle_close, }