diff options
author | Ricardo Wurmus <rekado@elephly.net> | 2019-12-14 15:52:29 +0100 |
---|---|---|
committer | Ricardo Wurmus <rekado@elephly.net> | 2019-12-15 15:38:51 +0100 |
commit | b5b6e74e150469e48111f0e6e5a83ab9f6b40cd8 (patch) | |
tree | bbbcb564659abf2dc9488557db6bd36b9fad23b4 | |
parent | 58c3a4f5969977402d83452f70d10289e0cd7305 (diff) | |
download | gnu-guix-b5b6e74e150469e48111f0e6e5a83ab9f6b40cd8.tar gnu-guix-b5b6e74e150469e48111f0e6e5a83ab9f6b40cd8.tar.gz |
gnu: Add r-idpmisc.
* gnu/packages/cran.scm (r-idpmisc): New variable.
-rw-r--r-- | gnu/packages/cran.scm | 29 |
1 files changed, 29 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm index bbe44d60b8..b12d984387 100644 --- a/gnu/packages/cran.scm +++ b/gnu/packages/cran.scm @@ -18655,3 +18655,32 @@ archetypoids with small and large databases and with both classical multivariate data and functional data (univariate and multivariate). Some of these algorithms also allow to detect anomalies (outliers).") (license license:gpl2+))) + +(define-public r-idpmisc + (package + (name "r-idpmisc") + (version "1.1.19") + (source + (origin + (method url-fetch) + (uri (cran-uri "IDPmisc" version)) + (sha256 + (base32 + "13qcvfm703frs367paddz1wq9k3p17f9p5347m56bhky5hjkaphd")))) + (properties `((upstream-name . "IDPmisc"))) + (build-system r-build-system) + (propagated-inputs + `(("r-lattice" ,r-lattice))) + (home-page "https://cran.r-project.org/web/packages/IDPmisc/") + (synopsis "Functions for data analyses and visualization") + (description + "This package provides different high-level graphics functions for +displaying large datasets, displaying circular data in a very flexible way, +finding local maxima, brewing color ramps, drawing nice arrows, zooming +2D-plots, creating figures with differently colored margin and plot region. +In addition, the package contains auxiliary functions for data manipulation +like omitting observations with irregular values or selecting data by logical +vectors, which include NAs. Other functions are especially useful in +spectroscopy and analyses of environmental data: robust baseline fitting, +finding peaks in spectra, converting humidity measures.") + (license license:gpl3+))) |