summaryrefslogtreecommitdiff
path: root/vendor/github.com/hashicorp/hil/check_types.go
blob: 7a191e8770935e719c8d4d1a8f3ae26b3b0138d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
package hil

import (
	"fmt"
	"sync"

	"github.com/hashicorp/hil/ast"
)

// TypeCheck implements ast.Visitor for type checking an AST tree.
// It requires some configuration to look up the type of nodes.
//
// It also optionally will not type error and will insert an implicit
// type conversions for specific types if specified by the Implicit
// field. Note that this is kind of organizationally weird to put into
// this structure but we'd rather do that than duplicate the type checking
// logic multiple times.
type TypeCheck struct {
	Scope ast.Scope

	// Implicit is a map of implicit type conversions that we can do,
	// and that shouldn't error. The key of the first map is the from type,
	// the key of the second map is the to type, and the final string
	// value is the function to call (which must be registered in the Scope).
	Implicit map[ast.Type]map[ast.Type]string

	// Stack of types. This shouldn't be used directly except by implementations
	// of TypeCheckNode.
	Stack []ast.Type

	err  error
	lock sync.Mutex
}

// TypeCheckNode is the interface that must be implemented by any
// ast.Node that wants to support type-checking. If the type checker
// encounters a node that doesn't implement this, it will error.
type TypeCheckNode interface {
	TypeCheck(*TypeCheck) (ast.Node, error)
}

func (v *TypeCheck) Visit(root ast.Node) error {
	v.lock.Lock()
	defer v.lock.Unlock()
	defer v.reset()
	root.Accept(v.visit)

	// If the resulting type is unknown, then just let the whole thing go.
	if v.err == errExitUnknown {
		v.err = nil
	}

	return v.err
}

func (v *TypeCheck) visit(raw ast.Node) ast.Node {
	if v.err != nil {
		return raw
	}

	var result ast.Node
	var err error
	switch n := raw.(type) {
	case *ast.Arithmetic:
		tc := &typeCheckArithmetic{n}
		result, err = tc.TypeCheck(v)
	case *ast.Call:
		tc := &typeCheckCall{n}
		result, err = tc.TypeCheck(v)
	case *ast.Conditional:
		tc := &typeCheckConditional{n}
		result, err = tc.TypeCheck(v)
	case *ast.Index:
		tc := &typeCheckIndex{n}
		result, err = tc.TypeCheck(v)
	case *ast.Output:
		tc := &typeCheckOutput{n}
		result, err = tc.TypeCheck(v)
	case *ast.LiteralNode:
		tc := &typeCheckLiteral{n}
		result, err = tc.TypeCheck(v)
	case *ast.VariableAccess:
		tc := &typeCheckVariableAccess{n}
		result, err = tc.TypeCheck(v)
	default:
		tc, ok := raw.(TypeCheckNode)
		if !ok {
			err = fmt.Errorf("unknown node for type check: %#v", raw)
			break
		}

		result, err = tc.TypeCheck(v)
	}

	if err != nil {
		pos := raw.Pos()
		v.err = fmt.Errorf("At column %d, line %d: %s",
			pos.Column, pos.Line, err)
	}

	return result
}

type typeCheckArithmetic struct {
	n *ast.Arithmetic
}

func (tc *typeCheckArithmetic) TypeCheck(v *TypeCheck) (ast.Node, error) {
	// The arguments are on the stack in reverse order, so pop them off.
	exprs := make([]ast.Type, len(tc.n.Exprs))
	for i, _ := range tc.n.Exprs {
		exprs[len(tc.n.Exprs)-1-i] = v.StackPop()
	}

	// If any operand is unknown then our result is automatically unknown
	for _, ty := range exprs {
		if ty == ast.TypeUnknown {
			v.StackPush(ast.TypeUnknown)
			return tc.n, nil
		}
	}

	switch tc.n.Op {
	case ast.ArithmeticOpLogicalAnd, ast.ArithmeticOpLogicalOr:
		return tc.checkLogical(v, exprs)
	case ast.ArithmeticOpEqual, ast.ArithmeticOpNotEqual,
		ast.ArithmeticOpLessThan, ast.ArithmeticOpGreaterThan,
		ast.ArithmeticOpGreaterThanOrEqual, ast.ArithmeticOpLessThanOrEqual:
		return tc.checkComparison(v, exprs)
	default:
		return tc.checkNumeric(v, exprs)
	}

}

func (tc *typeCheckArithmetic) checkNumeric(v *TypeCheck, exprs []ast.Type) (ast.Node, error) {
	// Determine the resulting type we want. We do this by going over
	// every expression until we find one with a type we recognize.
	// We do this because the first expr might be a string ("var.foo")
	// and we need to know what to implicit to.
	mathFunc := "__builtin_IntMath"
	mathType := ast.TypeInt
	for _, v := range exprs {
		// We assume int math but if we find ANY float, the entire
		// expression turns into floating point math.
		if v == ast.TypeFloat {
			mathFunc = "__builtin_FloatMath"
			mathType = v
			break
		}
	}

	// Verify the args
	for i, arg := range exprs {
		if arg != mathType {
			cn := v.ImplicitConversion(exprs[i], mathType, tc.n.Exprs[i])
			if cn != nil {
				tc.n.Exprs[i] = cn
				continue
			}

			return nil, fmt.Errorf(
				"operand %d should be %s, got %s",
				i+1, mathType, arg)
		}
	}

	// Modulo doesn't work for floats
	if mathType == ast.TypeFloat && tc.n.Op == ast.ArithmeticOpMod {
		return nil, fmt.Errorf("modulo cannot be used with floats")
	}

	// Return type
	v.StackPush(mathType)

	// Replace our node with a call to the proper function. This isn't
	// type checked but we already verified types.
	args := make([]ast.Node, len(tc.n.Exprs)+1)
	args[0] = &ast.LiteralNode{
		Value: tc.n.Op,
		Typex: ast.TypeInt,
		Posx:  tc.n.Pos(),
	}
	copy(args[1:], tc.n.Exprs)
	return &ast.Call{
		Func: mathFunc,
		Args: args,
		Posx: tc.n.Pos(),
	}, nil
}

func (tc *typeCheckArithmetic) checkComparison(v *TypeCheck, exprs []ast.Type) (ast.Node, error) {
	if len(exprs) != 2 {
		// This should never happen, because the parser never produces
		// nodes that violate this.
		return nil, fmt.Errorf(
			"comparison operators must have exactly two operands",
		)
	}

	// The first operand always dictates the type for a comparison.
	compareFunc := ""
	compareType := exprs[0]
	switch compareType {
	case ast.TypeBool:
		compareFunc = "__builtin_BoolCompare"
	case ast.TypeFloat:
		compareFunc = "__builtin_FloatCompare"
	case ast.TypeInt:
		compareFunc = "__builtin_IntCompare"
	case ast.TypeString:
		compareFunc = "__builtin_StringCompare"
	default:
		return nil, fmt.Errorf(
			"comparison operators apply only to bool, float, int, and string",
		)
	}

	// For non-equality comparisons, we will do implicit conversions to
	// integer types if possible. In this case, we need to go through and
	// determine the type of comparison we're doing to enable the implicit
	// conversion.
	if tc.n.Op != ast.ArithmeticOpEqual && tc.n.Op != ast.ArithmeticOpNotEqual {
		compareFunc = "__builtin_IntCompare"
		compareType = ast.TypeInt
		for _, expr := range exprs {
			if expr == ast.TypeFloat {
				compareFunc = "__builtin_FloatCompare"
				compareType = ast.TypeFloat
				break
			}
		}
	}

	// Verify (and possibly, convert) the args
	for i, arg := range exprs {
		if arg != compareType {
			cn := v.ImplicitConversion(exprs[i], compareType, tc.n.Exprs[i])
			if cn != nil {
				tc.n.Exprs[i] = cn
				continue
			}

			return nil, fmt.Errorf(
				"operand %d should be %s, got %s",
				i+1, compareType, arg,
			)
		}
	}

	// Only ints and floats can have the <, >, <= and >= operators applied
	switch tc.n.Op {
	case ast.ArithmeticOpEqual, ast.ArithmeticOpNotEqual:
		// anything goes
	default:
		switch compareType {
		case ast.TypeFloat, ast.TypeInt:
			// fine
		default:
			return nil, fmt.Errorf(
				"<, >, <= and >= may apply only to int and float values",
			)
		}
	}

	// Comparison operators always return bool
	v.StackPush(ast.TypeBool)

	// Replace our node with a call to the proper function. This isn't
	// type checked but we already verified types.
	args := make([]ast.Node, len(tc.n.Exprs)+1)
	args[0] = &ast.LiteralNode{
		Value: tc.n.Op,
		Typex: ast.TypeInt,
		Posx:  tc.n.Pos(),
	}
	copy(args[1:], tc.n.Exprs)
	return &ast.Call{
		Func: compareFunc,
		Args: args,
		Posx: tc.n.Pos(),
	}, nil
}

func (tc *typeCheckArithmetic) checkLogical(v *TypeCheck, exprs []ast.Type) (ast.Node, error) {
	for i, t := range exprs {
		if t != ast.TypeBool {
			cn := v.ImplicitConversion(t, ast.TypeBool, tc.n.Exprs[i])
			if cn == nil {
				return nil, fmt.Errorf(
					"logical operators require boolean operands, not %s",
					t,
				)
			}
			tc.n.Exprs[i] = cn
		}
	}

	// Return type is always boolean
	v.StackPush(ast.TypeBool)

	// Arithmetic nodes are replaced with a call to a built-in function
	args := make([]ast.Node, len(tc.n.Exprs)+1)
	args[0] = &ast.LiteralNode{
		Value: tc.n.Op,
		Typex: ast.TypeInt,
		Posx:  tc.n.Pos(),
	}
	copy(args[1:], tc.n.Exprs)
	return &ast.Call{
		Func: "__builtin_Logical",
		Args: args,
		Posx: tc.n.Pos(),
	}, nil
}

type typeCheckCall struct {
	n *ast.Call
}

func (tc *typeCheckCall) TypeCheck(v *TypeCheck) (ast.Node, error) {
	// Look up the function in the map
	function, ok := v.Scope.LookupFunc(tc.n.Func)
	if !ok {
		return nil, fmt.Errorf("unknown function called: %s", tc.n.Func)
	}

	// The arguments are on the stack in reverse order, so pop them off.
	args := make([]ast.Type, len(tc.n.Args))
	for i, _ := range tc.n.Args {
		args[len(tc.n.Args)-1-i] = v.StackPop()
	}

	// Verify the args
	for i, expected := range function.ArgTypes {
		if expected == ast.TypeAny {
			continue
		}

		if args[i] == ast.TypeUnknown {
			v.StackPush(ast.TypeUnknown)
			return tc.n, nil
		}

		if args[i] != expected {
			cn := v.ImplicitConversion(args[i], expected, tc.n.Args[i])
			if cn != nil {
				tc.n.Args[i] = cn
				continue
			}

			return nil, fmt.Errorf(
				"%s: argument %d should be %s, got %s",
				tc.n.Func, i+1, expected.Printable(), args[i].Printable())
		}
	}

	// If we're variadic, then verify the types there
	if function.Variadic && function.VariadicType != ast.TypeAny {
		args = args[len(function.ArgTypes):]
		for i, t := range args {
			if t == ast.TypeUnknown {
				v.StackPush(ast.TypeUnknown)
				return tc.n, nil
			}

			if t != function.VariadicType {
				realI := i + len(function.ArgTypes)
				cn := v.ImplicitConversion(
					t, function.VariadicType, tc.n.Args[realI])
				if cn != nil {
					tc.n.Args[realI] = cn
					continue
				}

				return nil, fmt.Errorf(
					"%s: argument %d should be %s, got %s",
					tc.n.Func, realI,
					function.VariadicType.Printable(), t.Printable())
			}
		}
	}

	// Return type
	v.StackPush(function.ReturnType)

	return tc.n, nil
}

type typeCheckConditional struct {
	n *ast.Conditional
}

func (tc *typeCheckConditional) TypeCheck(v *TypeCheck) (ast.Node, error) {
	// On the stack we have the types of the condition, true and false
	// expressions, but they are in reverse order.
	falseType := v.StackPop()
	trueType := v.StackPop()
	condType := v.StackPop()

	if condType == ast.TypeUnknown {
		v.StackPush(ast.TypeUnknown)
		return tc.n, nil
	}

	if condType != ast.TypeBool {
		cn := v.ImplicitConversion(condType, ast.TypeBool, tc.n.CondExpr)
		if cn == nil {
			return nil, fmt.Errorf(
				"condition must be type bool, not %s", condType.Printable(),
			)
		}
		tc.n.CondExpr = cn
	}

	// The types of the true and false expression must match
	if trueType != falseType {

		// Since passing around stringified versions of other types is
		// common, we pragmatically allow the false expression to dictate
		// the result type when the true expression is a string.
		if trueType == ast.TypeString {
			cn := v.ImplicitConversion(trueType, falseType, tc.n.TrueExpr)
			if cn == nil {
				return nil, fmt.Errorf(
					"true and false expression types must match; have %s and %s",
					trueType.Printable(), falseType.Printable(),
				)
			}
			tc.n.TrueExpr = cn
			trueType = falseType
		} else {
			cn := v.ImplicitConversion(falseType, trueType, tc.n.FalseExpr)
			if cn == nil {
				return nil, fmt.Errorf(
					"true and false expression types must match; have %s and %s",
					trueType.Printable(), falseType.Printable(),
				)
			}
			tc.n.FalseExpr = cn
			falseType = trueType
		}
	}

	// Currently list and map types cannot be used, because we cannot
	// generally assert that their element types are consistent.
	// Such support might be added later, either by improving the type
	// system or restricting usage to only variable and literal expressions,
	// but for now this is simply prohibited because it doesn't seem to
	// be a common enough case to be worth the complexity.
	switch trueType {
	case ast.TypeList:
		return nil, fmt.Errorf(
			"conditional operator cannot be used with list values",
		)
	case ast.TypeMap:
		return nil, fmt.Errorf(
			"conditional operator cannot be used with map values",
		)
	}

	// Result type (guaranteed to also match falseType due to the above)
	v.StackPush(trueType)

	return tc.n, nil
}

type typeCheckOutput struct {
	n *ast.Output
}

func (tc *typeCheckOutput) TypeCheck(v *TypeCheck) (ast.Node, error) {
	n := tc.n
	types := make([]ast.Type, len(n.Exprs))
	for i, _ := range n.Exprs {
		types[len(n.Exprs)-1-i] = v.StackPop()
	}

	for _, ty := range types {
		if ty == ast.TypeUnknown {
			v.StackPush(ast.TypeUnknown)
			return tc.n, nil
		}
	}

	// If there is only one argument and it is a list, we evaluate to a list
	if len(types) == 1 {
		switch t := types[0]; t {
		case ast.TypeList:
			fallthrough
		case ast.TypeMap:
			v.StackPush(t)
			return n, nil
		}
	}

	// Otherwise, all concat args must be strings, so validate that
	resultType := ast.TypeString
	for i, t := range types {

		if t == ast.TypeUnknown {
			resultType = ast.TypeUnknown
			continue
		}

		if t != ast.TypeString {
			cn := v.ImplicitConversion(t, ast.TypeString, n.Exprs[i])
			if cn != nil {
				n.Exprs[i] = cn
				continue
			}

			return nil, fmt.Errorf(
				"output of an HIL expression must be a string, or a single list (argument %d is %s)", i+1, t)
		}
	}

	// This always results in type string, unless there are unknowns
	v.StackPush(resultType)

	return n, nil
}

type typeCheckLiteral struct {
	n *ast.LiteralNode
}

func (tc *typeCheckLiteral) TypeCheck(v *TypeCheck) (ast.Node, error) {
	v.StackPush(tc.n.Typex)
	return tc.n, nil
}

type typeCheckVariableAccess struct {
	n *ast.VariableAccess
}

func (tc *typeCheckVariableAccess) TypeCheck(v *TypeCheck) (ast.Node, error) {
	// Look up the variable in the map
	variable, ok := v.Scope.LookupVar(tc.n.Name)
	if !ok {
		return nil, fmt.Errorf(
			"unknown variable accessed: %s", tc.n.Name)
	}

	// Add the type to the stack
	v.StackPush(variable.Type)

	return tc.n, nil
}

type typeCheckIndex struct {
	n *ast.Index
}

func (tc *typeCheckIndex) TypeCheck(v *TypeCheck) (ast.Node, error) {
	keyType := v.StackPop()
	targetType := v.StackPop()

	if keyType == ast.TypeUnknown || targetType == ast.TypeUnknown {
		v.StackPush(ast.TypeUnknown)
		return tc.n, nil
	}

	// Ensure we have a VariableAccess as the target
	varAccessNode, ok := tc.n.Target.(*ast.VariableAccess)
	if !ok {
		return nil, fmt.Errorf(
			"target of an index must be a VariableAccess node, was %T", tc.n.Target)
	}

	// Get the variable
	variable, ok := v.Scope.LookupVar(varAccessNode.Name)
	if !ok {
		return nil, fmt.Errorf(
			"unknown variable accessed: %s", varAccessNode.Name)
	}

	switch targetType {
	case ast.TypeList:
		if keyType != ast.TypeInt {
			tc.n.Key = v.ImplicitConversion(keyType, ast.TypeInt, tc.n.Key)
			if tc.n.Key == nil {
				return nil, fmt.Errorf(
					"key of an index must be an int, was %s", keyType)
			}
		}

		valType, err := ast.VariableListElementTypesAreHomogenous(
			varAccessNode.Name, variable.Value.([]ast.Variable))
		if err != nil {
			return tc.n, err
		}

		v.StackPush(valType)
		return tc.n, nil
	case ast.TypeMap:
		if keyType != ast.TypeString {
			tc.n.Key = v.ImplicitConversion(keyType, ast.TypeString, tc.n.Key)
			if tc.n.Key == nil {
				return nil, fmt.Errorf(
					"key of an index must be a string, was %s", keyType)
			}
		}

		valType, err := ast.VariableMapValueTypesAreHomogenous(
			varAccessNode.Name, variable.Value.(map[string]ast.Variable))
		if err != nil {
			return tc.n, err
		}

		v.StackPush(valType)
		return tc.n, nil
	default:
		return nil, fmt.Errorf("invalid index operation into non-indexable type: %s", variable.Type)
	}
}

func (v *TypeCheck) ImplicitConversion(
	actual ast.Type, expected ast.Type, n ast.Node) ast.Node {
	if v.Implicit == nil {
		return nil
	}

	fromMap, ok := v.Implicit[actual]
	if !ok {
		return nil
	}

	toFunc, ok := fromMap[expected]
	if !ok {
		return nil
	}

	return &ast.Call{
		Func: toFunc,
		Args: []ast.Node{n},
		Posx: n.Pos(),
	}
}

func (v *TypeCheck) reset() {
	v.Stack = nil
	v.err = nil
}

func (v *TypeCheck) StackPush(t ast.Type) {
	v.Stack = append(v.Stack, t)
}

func (v *TypeCheck) StackPop() ast.Type {
	var x ast.Type
	x, v.Stack = v.Stack[len(v.Stack)-1], v.Stack[:len(v.Stack)-1]
	return x
}

func (v *TypeCheck) StackPeek() ast.Type {
	if len(v.Stack) == 0 {
		return ast.TypeInvalid
	}

	return v.Stack[len(v.Stack)-1]
}